• Title/Summary/Keyword: 교전모델

Search Result 68, Processing Time 0.023 seconds

Development of the Engagement Control Software Architecture Based on UML 2.0 Model (UML 2.0 모델 기반의 교전통제 소프트웨어 아키텍처 개발)

  • Yoo, Myong-Hwan;Bae, Jung-Il;Shin, Jin-Hwa;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.20-29
    • /
    • 2007
  • The engagement control software embedded in the weapon control computer of the fire control center for air defense missile system is large-scale real-time software. The use of typical software development methodologies is not appropriate to develop such large-scale embedded software in terms of reusability, reliability, and productivity for the reason that it is significantly complicated, and highly dependent on hardware platforms and developers. In this paper, a model-based software architecture using components based on UML 2.0 for the engagement control software is presented in order to solve these problems. This software architecture is verified using the black-box test, the scenario-based test, and the Ethernet packet monitoring test methods. The results demonstrate that the developed software architecture can be employed to enhance reusability, maintainability, and productivity of large-scale embedded software.

A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers (임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법)

  • Kim, Taehyon;Bae, Jungil;Shin, Jinbeom;Cho, Kilseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.

A Passive Ranging Filter with Initial Range Error Compensation (초기 거리오차 보상 피동 거리 추정 필터)

  • 황익호;정상근
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.185-194
    • /
    • 2002
  • To extract relative ranges from LOS(line of sight) information, we propose a passive ranging filter which is suitable for anti-ship missiles in HOJ(home on jam) mode. The proposed filter is devised to cope with the case that a passive ranging filter may include a large initial range estimation error since modem jammers are capable of very long range jamming. In addition, under the assumption that the missile motion is dominant over the HOJ engagement situation, the engagement geometry is modeled by a second order system. A new passive ranging filter is proposed by constructing an extended Kalman filter(EKF) based on the model. And then a least square initial state error estimation algorithm is attached to the EKF. Simulation results show that the proposed filter has a good range estimation performance with small computational load.

An Analysis Study about Relationship between Ballistic Coefficient and Accuracy of Predicted Intercept Point of Super-High Speed Targets (초고속 표적의 탄도계수와 예상요격지점 정확도의 상관관계 분석 연구)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.265-274
    • /
    • 2014
  • A recent air defense missile system(ADMS) is required to have a capability to intercept super-high speed targets such as tactical ballistic missiles(TBMs) by performing engagement control efficiently. The air defense missile system should be ready to engage the TBMs as soon as the ADMS detects TBMs because falling velocity of TBM is very high and remaining time interval to engage TBM is very short. As a result, the ADMS has to predict the trajectories of TBMs accurately with estimated states of dynamics to generate predicted intercept point(PIP). In addition, it is needed to engage TBMs accurately via transmitting the obtained PIP data to the corresponding intercept missiles. In this paper, an analysis about the relationship between ballistic coefficient and PIP accuracy which is depending on geodetic height of the first detection of TBM is included and an issue about effective engagement control for the TBM is considered.

Methodology of battle damage assessment in the naval wargame model - Forcusing on damage assessment of warship - (해상전 워게임모델의 교전 피해평가 수준 및 산정방법론 - 함정 피해평가를 중심으로 -)

  • Kim, Bong Seok;Choi, Bong Wan;Kim, Chong Su
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.53-64
    • /
    • 2021
  • Wargame is a simulated military operation with certain rules, specifications, and procedures, in which soldiers can virtually and indirectly experience the war. The ROK Navy operates the Cheonghae model, a training wargame model for helping commanders and staff master the procedures for conducting the war. It is important for commanders, staff and analysts to know whether a warship can perform its missions and how long it can last during a war. In existing model, the Cheonghae, the probability of kill of a warship is calculated simply considering the number of tonnage without any stochastic elements, and the warship's mission availability is also determined based on predetermined values. With this model, it is difficult to get a value of the probability of kill that makes sense. In this dissertation, the author has developed a probabilistic model in which the warship vulnerability data of ROK-JMEM can be used. A conceptual model and methodology that can evaluate the mission performance of personnel, equipment, and supplies has been proposed. This can be expanded to a comprehensive assessment of wartime warship loss rates by integrating damage rates for personnel, equipment, and supplies in wartime.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

Reverse Simulation Software Architecture for Required Performance Analysis of Defense System (국방 시스템의 요구 성능 분석을 위한 역 방향 시뮬레이션 소프트웨어 아키텍처)

  • Hong, Jeong Hee;Seo, Kyung-Min;Kim, Tag Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.750-759
    • /
    • 2015
  • This paper focuses on reverse simulation methods to find and analyze the required performance of a defense system under a given combat effectiveness. Our approach is motivated that forward simulation, that traditionally employs the effectiveness analysis of performance alternatives, is not suitable for resolving the above issue because it causes a high computational cost due to repeating simulations of all possible alternatives. To this end, the paper proposes a reverse simulation software architecture, which consists of several functional sub-modules that facilitate two types of reverse simulations according to possibility of inverse model design. The proposed architecture also enable to apply various search algorithms to find required operational capability efficiently. With this architecture, we performed two case studies about underwater and anti-air warfare scenarios. The case studies show that the proposed reverse simulation incurs a smaller computational cost, while finding the same level of performance alternatives compared with traditional forward simulation. Finally we expect that this study provides a guide those who desire to make decisions about new defense systems development.

Simulation and Analysis of Response Plans against Chemical and Biological Hazards (화학 생물 위험 대응 시뮬레이션 및 분석)

  • Han, Sangwoo;Seo, Jiyun;Shim, Woosup
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.49-64
    • /
    • 2021
  • M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.

A Design of Management and Verification Tool of Component and A Development of SAM Simulator based on Dynamic Reconfiguration Architecture (컴포넌트 관리 및 검증도구 설계와 동적 재구성 아키텍처 기반 SAM 시뮬레이터 개발)

  • Suk, Jeebeom;Lee, Jaeoh;Lee, Jaejin;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • Modeling and simulation techniques construct experimental environment considering battlefields and are able to analyze performance of components of weapon system that closely resemble reality. However, developed model has low scalability and not cared reusability because it has been used only in a limited range of domain. In this paper, we develop a verification tool to verify reusability of developed component for dynamic reconfiguration and to judge scalability of it and a management tool to control data of it effectively. In addition, dynamic reconfiguration architecture of guided weapon systems designed in the previous study has been applied to SAM(Surface to Air Missile) System Simulator, and we study effectiveness of the developed component. Thus the user can configure various guided weapon systems through simulation application of dynamic reconfiguration architecture of component.