• Title/Summary/Keyword: 교사-학생 아키텍처

Search Result 2, Processing Time 0.015 seconds

Teacher-Student Architecture Based CNN for Action Recognition (동작 인식을 위한 교사-학생 구조 기반 CNN)

  • Zhao, Yulan;Lee, Hyo Jong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.99-104
    • /
    • 2022
  • Convolutional neural network (CNN) generally uses two-stream architecture RGB and optical flow stream for its action recognition function. RGB frames stream display appearance and optical flow stream interprets its action. However, the standard method of using optical flow is costly in its computational time and latency associated with increased action recognition. The purpose of the study was to evaluate a novel way to create a two sub-networks in neural networks. The optical flow sub-network was assigned as a teacher and the RGB frames as a student. In the training stage, the optical flow sub-network extracts features through the teacher sub-network and transmits the information to student sub-network for baseline training. In the test stage, only student sub-network was operational with decreased in latency without computing optical flow. Experimental results shows that our network fed only by RGB stream gets a competitive accuracy of 54.5% on HMDB51, which is 1.5 times better than that on R3D-18.

Explanation-focused Adaptive Multi-teacher Knowledge Distillation (다중 신경망으로부터 해석 중심의 적응적 지식 증류)

  • Chih-Yun Li;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.592-595
    • /
    • 2024
  • 엄청난 성능에도 불구하고, 심층 신경망은 예측결과에 대한 설명이 없는 블랙 박스로 작동한다는 비판을 받고 있다. 이러한 불투명한 표현은 신뢰성을 제한하고 모델의 대한 과학적 이해를 방해한다. 본 연구는 여러 개의 교사 신경망으로부터 설명 중심의 학생 신경망으로 지식 증류를 통해 해석 가능성을 향상시키는 것을 제안한다. 구체적으로, 인간이 정의한 개념 활성화 벡터 (CAV)를 통해 교사 모델의 개념 민감도를 방향성 도함수를 사용하여 계량화한다. 목표 개념에 대한 민감도 점수에 비례하여 교사 지식 융합을 가중치를 부여함으로써 증류된 학생 모델은 양호한 성능을 달성하면서 네트워크 논리를 해석으로 집중시킨다. 실험 결과, ResNet50, DenseNet201 및 EfficientNetV2-S 앙상블을 7 배 작은 아키텍처로 압축하여 정확도가 6% 향상되었다. 이 방법은 모델 용량, 예측 능력 및 해석 가능성 사이의 트레이드오프를 조화하고자 한다. 이는 모바일 플랫폼부터 안정성이 중요한 도메인에 걸쳐 믿을 수 있는 AI 의 미래를 여는 데 도움이 될 것이다.