• Title/Summary/Keyword: 교량 보강공법

Search Result 74, Processing Time 0.024 seconds

Determination of the Initial Tendon Force using Rating Factor Equation in Composite Girders Strengthened with External Tendons (외부 긴장재로 보강된 강합성보의 내하율 산정식을 이용한 초기 긴장력 결정)

  • Choi, Dong Ho;Chung, Sang Hwan;Yoo, Dong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.527-536
    • /
    • 2005
  • A method of reinforcement using external tendons has been found to be one of the effective techniques of reinforcement and its application is increasing. In this paper, the method to calculate the initial tendon force is proposed for the improvement of load-carrying capacity in existing steel-concrete composite bridges. An equation for the increment of tendon force was derived for tendon configurations and live load types, and the effect of reinforcement in a composite beam was numerically studied. The method to calculate the number of tendon and initial tendon force was presented by proposing the new method to calculate the rating factor, which considers the increment of tendon force. The method was shown to be effective for an existing steel-concrete bridge.

Mechanical properties of carbon fiber sheet and carbon fiber strand sheet based on carbon fibers for the reinforcement of highway bridge RC slabs (도로교 RC 상판 보강을 위한 탄소섬유 기초 carbon fiber sheet와 carbon fiber strand sheet의 역학특성)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.290-293
    • /
    • 2015
  • Recently, a lot of interest has been shown in structural maintenance managements of civil infrastructures. Many researchers have been conducted on various maintenance techniques and repair materials. Among other fiber materials the carbon fiber materials are especially focused on maintenance management of Highway Bridges. Extensive work has been done on Carbon Fiber Sheet (CFS). Nevertheless, Carbon Fiber Strand Sheet (CFSS) is a newly developed material, on which limited work has been done until now. Therefore, in this study bonding the CFSS to RC slab specimen and fatigue resistance evaluation has been conducted. The results demonstrated an increase of 25.3 times more reinforcement of RC slab compared to non-reinforced RC slab. Moreover, compared to CFS-bonded RC slab, The CFSS-bonded RC slab showed 1.2 times greater reinforcement.

Strengthening Capacity of Bridge Deck Strengthened with Carbon Fiber Rod and Polymer Mortar (고강도 폴리머 모르타르 및 탄소섬유 봉(Rod)으로 보강된 교량 바닥판의 보강성능)

  • Sim Jongsung;Moon Do-Young;Ju Mm-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.213-220
    • /
    • 2004
  • This paper deals with an enhanced structural capacity of reinforced concrete bridge deck strengthened with carbon fiber rod (CFR) which is subjected to monotonic and cyclic loads. Strengthening variables considered in this test were evenly and unevenly strengthening type. To evaluate strengthening capacity for these two strengthening types, load-carrying capacity and crack and failure pattern from the failure test were analyzed and fatigue response were examined. According to the test results, all the strengthened specimens showed punching shear failure as a result of premature failure of bonding interface between mortar and concrete. In the case of strengthening capacity, it was observed that the strengthened specimens was more effective in strength, stiffness and fatigue endurance limit than the unstrengthened specimen. In addition, the unevenly strengthening method (CR-UE) was more effective than the evenly strengthening method (CR-E).

The Method of construction for YoungJong Grand Bridge (영종도 연육교 적용 공법)

  • Shin HyunYang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.239-253
    • /
    • 2000
  • 영종대교는 2000년대 수도권 항공수요에 대비하여 영종도와 용유도 일원의 간석지에 건설되어, 인천국제공항과 인천 경서동을 연결하는 총연장 4,420m의 해상교량으로 현수교 3경간(550m), Truss교 18경간 (2,250m), 강상형교 27경간(1.620m)로 구성되어 있다. 영종대교는 10개 차선, 철도 2개 차선의 교량으로 건설된다. 교량이 건설되는 해역은 10,000ton급 선박의 통행이 가능하도록 교하공간 35m의 현수교를 계획 하였으며 경제성을 고려하여 Cable을 보강형에 정착시켰다. 미관을 고려한 경간 분할에 따른 교량의 부상을 방지하기 위하여 단부교각에 Link 구조를 설치하고 접속교를 Counterweight로 이용하였으며 Cable 장력이 저감되도록 Sag비를 1/5(=f/1)로 설정하였다.

  • PDF

Reinforcing effects of carbon fiber sheet by compressive strength differences on the RC slabs (도로교 RC 상판의 압축강도 차이에 따른 탄소섬유시트 보강효과)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • This study investigates the effect of carbon fiber sheet (CFS) and carbon fiber strand sheet (CFSS) on the fatigue resistance and compressive strength of RC slabs. The results of a comparison of the number of equivalent cycles between the CFS- and CFSS-reinforced RC slab test specimens obtained from a fatigue test indicate that the CFSS-reinforced RC slab has 1.2~1.3 times greater effect of reinforcement than the CFS-reinforced RC slab. This study also indicates that the fatigue resistance of the CFS- and CFSS-reinforced RC slabs is ensured when the compressive strength of concrete is not lower than the specified design strength prescribed in the Specifications for Highway Bridges but is not ensured when the compressive strength of concrete is lower than the specified design strength, although the effect of reinforcement is secured.

Pseudo Dynamic Test for the Seismic Performance Enhancement of Circular RC Bridge Piers Retrofitted with Fibers (섬유보강 원형 철근콘크리트 교각의 내진성능 향상에 관한 유사동적 실험)

  • 정영수;박종협;박희상;조창백
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.180-189
    • /
    • 2002
  • The objective of this experimental research is to assess the seismic performance of circular RC bridge pier specimens retrofitted with fibers which were designed as a prototype of Hagal bridge in the city of Suwon, Korea. Pseudo dynamic test has been done for four(4) test specimens which were nonseismically or seismically designed by the related provisions of the Korea roadway bridge design specification, and four nonseisemic test specimens retrofitted with fibers in the plastic hinge region. Glass and carbon fiber sheets were used for the seismic capacity enhancement of circular test specimens. Important test parameters were confinement steel ratio, load pattern, and retrofitting. The seismic behavior has been analyzed through the displacement ductility, energy analysis, and capacity spectrum. Approximate 7.7 ∼8.7 displacement ductility was observed for nonseismic test specimens retrofitted with fibers subjected to Korea Highway Cooperation artificial earthquake motions. It is concluded that these retrofitted test specimens could have sufficient seismic capacity in the region of moderate seismic zone.

Behavior of concrete cylinders confined by jacketing with lateral confining stress (횡방향 구속응력에 의한 자켓팅-콘크리트 공시편 거동)

  • Cho, Sung-Chul;Choi, Eun-Soo;Chung, Young-Soo;Cho, Baik-Soon;Choi, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.157-160
    • /
    • 2008
  • The confined concrete subjected multi-axil stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effect of concrete, and now are studying in many fields. Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under loading. This study introduces a new method to retrofit RC bridge columns with lap splice which do not have enough ductility during an earthquake. The new method use mechanical external pressure and steel plates around RC columns. The jacketing built following the new method shows good results of increasing the compressive strength and ductility of concrete cylinders. The thicker steel jacket shows larger compressive strength, however, the ductility at failure depends on the welding quality of steel jackets. In this study, The effect of the new method is verified through comparing the results of the compressive tests and analysis results.

  • PDF

Experimental Study on Application of Multi-Stepwise TPSM (다단계 온도프리스트레싱 공법의 현장적용을 위한 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Kim, Sang-Hyo;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • Multi-stepwise Thermal Prestressing Method(TPSM) is a newly proposed prestressing method, which is combined the external prestressing method and the external bonding method. Multi-stepwise thermal prestressing force is induced by cooling process of cover-plate in the multi-stepwise temperature distribution after the cover-plate being bolted to the girder. In this study, the heating capacity test of the developed heating system for applying the multi-stepwise TPSM effectively and multi-stepwise TPSM inducing test of H-beam is performed. Also, a field test of the rhamen type temporary bridge is carried out to evaluate the effect and application of the multi-stepwise TPSM. Truck load was loaded and compared with the structure analysis results.

PZT Sensor-based Structural Health Monitoring for CFRP Laminated Concrete Structures (CFRP 보강 콘크리트 구조물의 PZT센서 기반 구조 건전성 모니터링)

  • Ryu, Sung-Chan;Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.72-78
    • /
    • 2010
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method is being very widely used to increase the load-carrying capacity of host structures, especially for bridges. However, not only flexure and shear failures but debonding failure also might occur in CFRP strengthened concrete structures. The CFRP debonding failure would cause a collapse accident of the host structure. Therefore, real-time health monitoring about the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors is investigated through a series of experimental study monitoring both concrete cracks and CFRP debonding defects.

A Case Study of Reinforcing Ground behind Abutment using Twin-Jet Method (트윈제트공법을 이용한 교대 배면 기초보강 사례)

  • Kim, Yong-Hyun;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.638-645
    • /
    • 2010
  • This study introduces a reinforcement work case using Twin-Jet Method. The area is located behind the abutment of the bridges built on soft clay along the $\bigcirc\bigcirc$ Express Highway. Its foundation was constructed by installing EPS blocks on the original ground to reduce the embankment load under the highway. However, the ground deformation has continuously occurred due to the settlement of the foundation soft cohesive soils. The amounts of subsidences at the surface turned out to be 20~30.0mm, After the pavement patch work on April 23, 2009, a drastic subsidence occurred together with 10mm swell, For this reason, Twin-Jet grout column construction was applied by passing through the EPS banking blocks without closing traffic flows on the express highway. The outcomes of core sample tests after reinforcing the ground turned out to be TCR 92.5%, RQD 64.6% and unconfined compressive strength 2.3~8.6Mpa. The test results showed that the condition of the ground foundation had improved using Twin-Jet grouting in most layers of ground including the cobble and gravel layer.

  • PDF