• Title/Summary/Keyword: 교량진단

Search Result 468, Processing Time 0.023 seconds

A Comparative Study on Seismic Fragility of RC Slab Bridge Considering Aging Effect of Components (RC 슬래브 교량의 요소별 노후도를 고려한 지진취약도 비교분석)

  • An, Hyojoon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.177-184
    • /
    • 2021
  • In recent years, large-scale earthquake activity has occurred in Korea, and thus public interest in earthquakes is increasing. Accordingly, the importance of seismic performance management of structures is emerging. In particular, the collapse of a bridge, one of main road facilities, directly leads to many casualties. Therefore, engineers need to evaluate the seismic fragility of the bridge and prepare for the earthquake event. The service life of these bridges has been over 30 years, which requires a study on the aging effect on bridges. In this study, seismic analysis of the target RC slab bridge was performed considering the aging effects of each component of the bridge. Components of the bridge included pier and bearing, which dominate the seismic response of the bridge. The seismic performance of the bridge was evaluated using nonlinear static and dynamic analyses. In addition, the limit state and dynamic response of each component were used to evaluate the seismic fragility according to the aging of each component.

A Dynamic Analysis of Rotations at the center of Vehicle Running High Speed KTX Train on the PSC Box Bridges (PSC 교량 위를 고속주행 중인 KTX 전동차의 중심회전각 동적해석)

  • Oh, Soon-Tack;Lee, Dong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • A dynamic analysis is carried out to provide an evaluation method of running safety for a PSC box bridge located on the Gyung-Bu high speed railway. The numerical models of bridge and train vehicle are developed in detail with corresponding interaction system. Three dimensional skeleton element model of PSC box bridge and 38-degree-of-freedom of vehicle are adopted from the existing properties of KTX bridge and train vehicle. Analysed three direction rotations of vehicle on the bridge and ground tracks are compared for running speeds up to 500 km/h with 10 km/h constant increments. The comparison of the rotations will be an improved evaluation method of Running Safety in stead of the existing standard method.

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

Fragility Analyses on Seismic Isolated LRB Concrete Bridges (LRB 면진 콘크리트 교량의 손상도 해석)

  • Kim, Jong-In;Kim, Doo-Kie;Kim, Tae-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.135-144
    • /
    • 2006
  • In performing a risk analysis of structures under earthquakes, it is imperative to identify the vulnerability of structures associated with various damage stages considering structural properties, soil-structure interactions, site condition, and so on. In this paper, the method to derive a representative fragility curve of seismic isolated LRB(lead rubber bearing) bridges is proposed. In which, the curve is assumed log-normally distribution with two parameters. The risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is also performed to assure the earthquake resisting capability of the structures. An practical way for constructing the representative fragility curves is also recommended combining fragility curves of structures.

Application of Structural Fuse Concept to Bridge Joint Design (교량의 이음부 설계를 위한 구조적 퓨즈 개념의 적용)

  • Lee, Jung Whee
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.18 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • 본 기사는 교량의 이음부(joint) 설계를 위한 새로운 구조적 퓨즈 개념을 다루고 있다. 제안하는 개념은 경제성, 명확한 하중경로, 그리고 지진 후 보수의 용이성 등을 포함한 여러 가지 장점을 가지고 있다. 기본적인 아이디어는 평상시의 사용 상태에서는 탄성거동을 할 수 있을 정도로 강하지만 동시에 주요 지진이 발생하였을 때는 파괴될 수 있을 정도로 약한 구조적 퓨즈를 설계하여 지진에너지가 퓨즈를 통과하지 못하도록 하겠다는 것이다. 두 가지의 대표적인 프로젝트를 소개하여 구조적 퓨즈의 개념이 실무에 어떻게 성공적으로 적용될 수 있었는지 보이고자 한다.

  • PDF

Damage Assessment of a Post-Tensioned Segmental Concrete Bridge Using Modal Testing Data (모달시험을 통한 Post-Tensioned Segmental 콘크리트 교량의 손상평가)

  • Heo, Gwanghee;Choi, Man-Yong;Wang, M.L.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 1999
  • 구조물의 동특성(고유진동수, 감쇠, 모드형상 등)의 변화는 구조물의 안전도를 평가할 수 있는 한 방법이다. 본 연구에서 콘크리트 세그먼트의 웨브 부분에 상당히 많은 균열이 진전되고 있는 상태의 Post-Tensioned Segmental 콘크리트 교량의 안전도 평가를 시도하였다. 안전도 평가를 위한 근간 데이터로 1986년 측정했던 데이터와 2차원 유한요소해석에서 얻은 결과값을 사용했다. 손상의 정도와 손상의 위치를 보다 정확히 찾아내기 위한 기술 중의 한 방법으로 Modal Test를 이용하였다. 이 방법이 Post-Tensioned Segmental 콘크리트 교량에 적용되어 교량의 안전도를 분석 평가하였다.

  • PDF

A method for naming of members in a truss-bridge model by using the centroid information of solid objects (솔리드 객체의 도심을 이용한 트러스교 모델의 부재별 고유번호 부여 방법)

  • Park, Jun-Won;Kim, Bong-Geun;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.231-234
    • /
    • 2011
  • 본 논문은 교량의 안전진단을 위한 각 부재의 명명체계에 따라 직선형 교량모델의 각 부재에 대한 솔리드 객체의 고유번호를 일괄적으로 부여하기 위한 방법론을 제시한다. 개발된 방법론은 크게 3 단계의 프로세스로 이루어진다. 먼저, 부재의 종류별로 구분된 레이어로부터 각 부재에 대한 솔리드 객체의 도심을 추출하고, 이를 시점과 종점으로 이루어진 교축방향을 축으로 한 국부좌표계에 대해 변환한다. 이후 교축방향으로 정렬되는 객체를 식별하여 그룹핑하고 이를 교축 및 교축의 직각방향으로 순서로 정렬한다. 마지막으로 각 그룹 내 세그먼트들을 교축방향으로 정렬한다. 개발된 방법론에 따른 시범 응용모듈을 개발하였으며, 트러스 구조와 서로 다른 모델 좌표계를 가진 시범 교량모델을 대상으로 추출된 그룹의 개수와 각 객체의 명칭을 원래의 모델과 비교하여 그 적용성을 검토하였다.

  • PDF

Diffusion of Chloride Ions and Evaluation of Lifetime in Highway Bridges (고속도로 교량의 염소이온확산 특성과 공용수명 평가)

  • Shin, Jae-In;Park, Chang-Ho;Lee, Byeong-Ju;Kim, Hyeong-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.152-158
    • /
    • 2007
  • Chloride attach is one of the main factors which cause the deterioration of structures. In the case highway bridges, de-ice salts very significantly increase the surface scaling due to frost action. The deteriorated concrete is subject to experience degrading of durability under chloride attach environment. In this study, diagnosis report of 147 bridges is investigated and core sample of 21 bridge decks is examined and analyzed. The results show that the cover of decks concrete is required more than 8cm for retaining bridge lifetime over 30 years.

Service Life Prediction and Carbonation of Bridge Structures according to Environmental Conditions (환경 조건에 따른 교량구조물의 탄산화 현황 및 내구수명 예측)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.126-132
    • /
    • 2010
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. Reinforced steel corrosion due to concrete carbonation is one of main factors on the decrease in durability of RC structure. This study investigates the influence of carbonation on the bridges under various environment condition and quantifies the effect of carbonation various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. According to experimental results of the carbonation depth, the carbonation depth increased with structural age. It is analyzed that carbonation velocity of the structures under urban area and sea condition is 1.6-1.9 times faster than the river condition. Service life of the bridges under urban area and sea condition is decreased about 2.4-3.3 times than river condition.

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.