• Title/Summary/Keyword: 교량미

Search Result 59, Processing Time 0.024 seconds

Vibration Analysis and Durability Evaluation of a Sign Frame on a Bridge (교량부속구조물에 대한 진동해석과 피로내구성평가)

  • Lee, Sang-Hun;Endo, Takao;Ishikawa, Masami;Han, Yeon-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.317-320
    • /
    • 2008
  • Between traffic-induced vibration of a bridge and fatigue damage of its attached structures are very closely related. But any evaluation and design method considering the fatigue damage is not established yet. As an experimental method of evaluation of the fatigue durability, a method based on cumulative damage using a stress range histogram has been often used. However, to use the method, the fatigue durability of unmeasured points could not be evaluated. Then, in this paper, dynamic analysis of a sign frame on a bridge is carried out based on the vibration data of the bridge. And model optimization was performed for good agreement between measured responses and computed responses. As a result, we could get stress range histograms and calculate fatigue durability of unmeasured points.

  • PDF

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint (십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • The joining methods of steel structures of gas facilities, bridges, ships etc. by welding are composed mostly of T-type or cruciform fillet welding and full penetration or partial penetration according to the uses and the shape of the structures. In this study, it was examined the characteristics of fatigue crack according to penetration depth in relation to material thickness in the cruciform fillet welded joints. From the results, it was investigated the safe design stresses within the range of infinite life. When the LOP length is long the range of infinite life is small with root failure and when the LOP length is short the range of infinite life is large with teo failure. For the specimen of material thickness, 20mm welded by 3 pass compared with 10mm, 15mm welded by 2 pass, the fatigue strength and the range of infinite life was more improved by increasing of notch toughness from formation of micro-ferrite acicular structure.

A Study on Characteristics of Fatigue Life in LOP Cruciform Fillet Welding Zone (미 용입 십자형 필릿 용접부에서의 피로 수명 특성에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.29-34
    • /
    • 2012
  • Investigating safer ways to design and use to prevent a loss of life and property by failure of the structures are necessary and assessing total fatigue life with initiation and propagation of fatigue crack accurately through fatigue analysis is very important. The object of this study is to examine the initial life and propagation life when the fatigue crack is introduced from the root which is likely to appear in LOP(Lack of Penetration) cruciform fillet welded structure including bridges, ships and gas storage facilities which are impossible to be fully penetrated and to measure the rate of fatigue life until the final cleavage failure. As the result, each rate of fatigue life for fatigue failure is somewhat different in the range of 5% according to the thickness of material, however, the overall rate of initial life is in the range of 34~39% and propagation life showed the range of 61~66%.

Development of Outdoor Augmented Reality Based 3D Visualization Application for Realistic Experience of Structures (구조물 실감 체험을 위한 야외 증강현실 기반의 3D 시각화 어플리케이션 개발)

  • Lee, Young-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.305-310
    • /
    • 2015
  • Recently, as AR(Augmented Reality) technology develops, it is used in field of diverse industry and specially affects structures and human interaction in field of architecture. This paper proposes 3D visualization application for realistic experience of structures by using outdoor AR technology. Proposed application visualizes structures such as high buildings, bridges, ships, and so on to be constructed in future, considering ambient environment by using outdoor AR technology, provides precisely user structures after completing construction and offers more realistic information and immersion as compared with previous methods.

Ultimate Shear Strength of Tapered Steel Plate Girders (높이가 변하는 플레이트거더의 극한전단강도)

  • Lee, Doo Sung;Park, Chan Sik;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.391-399
    • /
    • 2006
  • Plate girders with variable depths have been often used at piers considering not only the economy but also an aesthetic aspect. Tapered plate girders exhibit more complicated behaviors than prismatic girders especially under shear. However, a comprehensive design method for the determination of the shear strength has yet to be developed mainly due to lack of study. In this study, investigated is the buckling and ultimate behaviors of tapered plate girders subjected to shear through finite element analyses. From the analysis results, a simple design formula is suggested for the evaluation of the shear strength of tapered plate girders.

Laboratory Experiments for Evaluating Dynamic Response of Small-scaled Circular Steel Pipe (실내 실험을 통한 소형 모형 원형 강관의 동적 반응 평가)

  • Song, Jung Uk;Lee, Jong-Sub;Park, Min-Chul;Byun, Yong-Hoon;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.81-92
    • /
    • 2018
  • For a marine bridge foundation construction, a large-circular-steel-pipe has been proposed for supporting vertical load and preventing water infiltration. However, a ship collision can adversely affect the structural stability. This paper presents a fundamental study on dynamic responses of the large-circular-steel-pipe by an impact load. In laboratory experiments, small-scaled steel pipe is installed in a soil tank. The soil height and water level are set to 23 cm and 25~70 cm, respectively. The upper part of the steel pipe is impacted using a hammer to simulate the ship collision. The dynamic responses are measured using accelerometers and strain gauges. Experimental results show that the strain decreases as the measured location is lowered. The higher frequency components appear in the impact load condition compared to the microtremor condition. However, the higher frequency components measured at the strain gauge located below the water level do not appear. For the accelerometer signal, the maximum frequency under the impact load is higher than that of the microtremor. The maximum frequency decreases as water level increases but it is larger than the maximum frequency of the microtremor. This study shows that strain gauge and accelerometer can be useful for evaluating the dynamic responses of large-circular-steel-pipes.

Effects of Lateral Bracing on the Load Distribution and Torsional Behaviors in Continuous Two-Girder Bridges (연속 2-거더교에서 수평브레이싱이 하중 분배 및 비틂 거동에 미치는 영향)

  • Hwang, Min Oh;Yoon, Tae Yang;Park, Yong Myung;Joe, Woom Do Ji;Hwang, Soon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.671-680
    • /
    • 2007
  • In this study, we performed a loading test to evaluate the effect of load distribution on continuous two-span plate-girder bridges with or without bottom lateral bracing using one-fifth-scale bridge specimens. From the test results, when specimens with lateral bracing were loaded eccentrically, the load distribution capacity of the concrete deck and cross beam improved and greater loading was distributed to the other side of the girder subjected to loading. The load distribution rate of the specimens with and without lateral bracing system was evaluated from the analytical model that was verified by the test results. From the result of the quantitative evaluation, when specimen without lateral bracing was loaded eccentrically, mostly 21% of loading according to the concrete deck was distributed to the other side of the girder subjected to loading. However, when specimen with lateral bracing was loaded eccentrically, the load distribution rate increased by 1.7 times as all cross beams, bracing and concrete deck participated in load distribution. The reason is that the torsional rigidity increased as the model with lateral bracing behaved like a pseudo-closed box section.

Simplified Bridge Weigh-In-Motion Algorithm using Strain Response of Short Span RC T-beam Bridge with no Crossbeam installed (가로보가 없는 단지간 RC T빔교의 변형률 응답을 이용한 단순화된 BWIM (Bridge Weigh-In-Motion) 알고리즘)

  • Jeon, Jun-Chang;Hwang, Yoon Koog;Lee, Hee-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.57-67
    • /
    • 2021
  • A thorough administration of the arterial road network requires a continuous supply of updated and accurate information about the traffic that travels on the roads. One of the ways to effectively obtain the traffic volume and weight distribution of heavy vehicles is the BWIM technique, which is actively being studied. Unlike previous studies, this study was performed to develop a simplified Bridge Weigh-In-Motion (BWIM) algorithm that can easily estimate the axle spacing and weight of a traveling vehicle by utilizing the structural characteristics of the bridge. A short span RC T-beam bridge with no crossbeam installed was selected for the study, and then the strain response characteristics of bridge deck and girder was checked through preliminary field test. Based on the preliminary field test results, a simplified BWIM algorithm suitable for the bridge to be studied was derived. The validity and accuracy of the BWIM algorithm derived in this study were verified through field test. As a result of the verification test, the proposed BWIM algorithm can estimate the axle spacing and gross weight of the travelling vehicles with the average percent error of less than 3%.