• Title/Summary/Keyword: 교량도로

Search Result 439, Processing Time 0.025 seconds

Dynamic Behavior of Curved Bridges under Seismic Loading (지진하중을 받는 곡선교량의 동적거동)

  • Park, Nam-Hoi;Yoon, Ki-Yong;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.11-21
    • /
    • 2005
  • This study is performed to understand complex behavior and to investigate the rational analysis methods for seismic design of the curved bridges. To analyze the curved bridges for the seismic loadings, it is used that the finite element analysis program has the 7-dof curved beam and straight beam element. The free vibration characteristics of the curved bridges are compared with the straight bridges that have span length same as the average arc length of inside and outside girder of those. For the same case, the dynamic behavior is compared under seismic loadings. It is found that regular bridges classified by AASHTO are analyzed as if those were straight. To investigate the dynamic behavior of general curved bridges under seismic loading, the seismic loading directions and the subtended angle of curved bridges are varied.

System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects (노후도를 고려한 교량의 시스템-수준 지진취약도 평가)

  • Kong, Sina;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • As a bridge ages, its mechanical properties and structural performance deteriorate, degrading its seismic performance during a strong earthquake. In this study, the aging of piers and bridge bearings was quantified in several stages and reflected in the analysis model, enabling the evaluation of the member-level seismic fragility of these bearings. Moreover, by assuming that the failure mechanism of a bridge system is a series system, a method for evaluating the system-level seismic fragility based on the member-level seismic fragility analysis result is formulated and proposed. For piers with rubber and lead-rubber bearings (members vulnerable to aging effects), five quantitative degrees of aging (0, 5, 10, 25, and 40%) are assumed to evaluate the member-level seismic fragility. Then, based on the result, the system-level seismic fragility evaluation was implemented. The pier rather than the bridge bearing is observed to have a dominant effect on the system-level seismic fragility. This means that the seismic fragility of more vulnerable structural members has a dominant influence on the seismic fragility of the entire bridge system.

Risk Index Computation of Work Type for Bridge Construction using Accident Cases and the AHP Method (재해사례와 AHP를 이용한 교량공사 위험지수 산정)

  • Seo, Su-Eun;Gang, Gyeong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.441-459
    • /
    • 2009
  • 교량공사는 지상작업과 고소작업이 혼재하고 작업공종이 복잡하여 위험성이 높은 공사로 추락, 협착, 붕괴, 낙하 비래 재해의 발생빈도가 높다. 또한, 중량 부재의 운반, 조립, 양중 등의 작업과정에서 유해 위험 기계기구와 건설장비 사용에 따른 유해 위험 요인이 산재하여, 유해 위험의 정도와 재해 발생빈도 및 재해의 강도에 차이가 있어 위험성평가를 통한 정량화된 위험지수의 제시가 필요하다. 위험성 평가는 교량공사의 특성을 고려하여 교량 건설현장의 공종별 유해 위험요인을 세부공종별 요소작업에 따라 분류하고, 재해 발생정도와 피해정도에 따른 위험도가 평가되어야 한다. 이러한 교량 건설공사의 재해를 줄이는데 기여할 수 있도록 정량화된 교량공사 위험지수를 제시함으로써 체계적이고 효율적인 재해예방 활동에 필요한 기초자료를 제공할 것이다. 특히 교량공사 시공 상의 제반 위험요인을 사전에 점검하여 변경 보완 제거할 수 있는 재해 예방대책을 수립하여 재해를 최소화하는 연구가 필요하게 되었다. 건설현장에서 위험지수의 고저에 따라 자원을 적정하게 배분한다면 안전관리의 효율성이 제고되고, 궁극적으로 건설재해 감소에 기여하게 될 것으로 기대된다.

  • PDF

A Study on Desings for Multi-lelvel and Mixed-use Roadway (입체/복합도로의 설계에 관한 연구)

  • Hong, Woo-Sik;Han, Sang-Ju;Park, Won-Joo;Park, Sang-Heon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.454-457
    • /
    • 2010
  • 본 연구에서는 입체/복합도로용 내진신축이음장치를 개발하고 복층구조의 입체/복합도로 JC를 설계하였다. 입체/복합도로용 내진 신축이음장치는 공중관통형 일체구조의 입체/복합도로에서 두 교량을 각각 지지하는 교각과 건물이 서로 다른 방향으로 거동할 때 거동 방향에 상관없이 교량을 주행 중인 차량이 안전하게 교량 상판을 통과할 수 있어 지진 등의 대형사고에 의한 피해를 최소화할 수 있다. 또한 지하형 복층구조의 입체/복합도로는 서로 직교하는 지하도로에 입체교차로를 형성하여 효율적인 지하 도로망을 구축할 수 있으며 지하도로를 건축물 지하주차장과 연결로를 통해 직접 연계함으로써 집객 효과가 매우 높다.

  • PDF

Basic Study for Development of Risk Based Bridge Maintenance Priority Decision Model (위험도기반 교량 유지관리 우선순위 선정 모델 개발을 위한 기초연구)

  • Kim, Dongiin;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2017
  • It is expected that the maintenance cost of domestic bridges will increase considerably due to the increase of bridge service time. In response to this situation, the government and relevant ministries are focusing on developing ways to efficiently allocate limited budgets and to rationally select maintenance bridge. In this study, to develop a risk - based bridge maintenance priority decision model, 14 common risk factors causing damage to bridges were extracted and AHP analysis was performed to select 5 important factors. Based on the existing literature review and expert consultation, we derive the evaluation criteria and the impact weights of the selected factors, and based on this, I presented risk based bridge maintenance priority model. Using this model in combination with existing maintenance priority methods will lead to more reasonable bridge maintenance priorities.

Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges (PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구)

  • Seo, Hyeong-Yeol;Yi, Jin-Hak;Kim, Doo-Kie;Song, Jong-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • To reduce the amount of seismic damage, several design codes are being improved considering the earthquake resistant systems, and many researches are being conducted to develop the earthquake damage evaluation techniques. This study develops the Korean seismic fragility function using the modified HAZUS method applicable to PSC-I girder bridges in Korea. The major coefficients are modified considering the difference between the seismic design levels of America and Korea. Seismic fragility function of the PSC-I girder bridge (one of the standard bridge types in Korea) is evaluated using two methods: numerical analysis and modified HAZUS method. The main coefficients are obtained about 70% of the proposed values in HAZUS. It is found that the seismic fragility function obtained using the modified HAZUS method closes to the fragility function obtained by conventional numerical analysis method.

Pollutant Contents with Particle Size Distribution in Bridge Road Drainage Sediment (교량도로 배수받이 퇴적물질의 입경별 오염물질 함량)

  • Lee, Jun-Ho;Cho, Yong-Jin;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1360-1365
    • /
    • 2007
  • The purpose of this study is to present the basic data for nonpoint pollutant loads from bridge road drainage sediments using the results to analyze organic matter and heavy metals from the four bridge drainage sampling sites with sediments of different particle size ranges. The sediment sample was collected from the bridge road drainage and the masses of nine sediments fractions were obtained after drying the separated sediment in an over at $85^{\circ}C:>2,000{\mu}m$, $1,000\sim2,000{\mu}m$, $850\sim1,000{\mu}m$, $425\sim850{\mu}m$, $212\sim425{\mu}m$, $125\sim212{\mu}m$, $90\sim125{\mu}m$, $75\sim90{\mu}m$, $<75{\mu}m$. The sediment extract was analyzed water quality constituents, including chemical oxygen demand(COD), total nitrogen(T-N), total phosphorus(T-P), heavy metals and particle size distribution. The results indicate that most of particle size ranges of the bridge road sediments was $125\sim425{\mu}m$, and portion of $<75{\mu}m$ was low. But most of the pollutants are associated with the finer fractions of the load sediments. As the results of analysis, the range and average values of COD, T-N, T-P, Fe, Cu, Cr, and Pb were $177\sim198.8$ mg/kg(77.6 mg/kg), $23\sim200$ mg/kg(83 mg/kg), T-P $18\sim215$ mg/kg(129 mg/kg), and $1,508\sim5,612$ mg/kg(3,835 mg/kg), $9.2\sim69.3$ mg/kg(49 mg/kg), $19.1\sim662.2$ mg/kg(214 mg/kg), and $28.4\sim251.4$ mg/kg(114 mg/kg), respectively. The relationship between sediment size and pollutants concentration have an inverse proportion. The removal of road sediments with frequently could be reduced the significant nonpoint pollutant load, because of the bridge road sediment contains considerable micro-particles and heavy metals.

Highway Bridge Inspection Period Based on Risk Assessment (위험도평가에 의한 고속도로 교량의 점검주기)

  • Lee, Il-Keun;Kim, Dong-Hyawn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.64-72
    • /
    • 2015
  • Risk Based Inspection (RBI) Period was proposed for highway bridges in Korea. Hazard factors affecting bridge condition deterioration were found by analyzing condition data from Highway Bridge Management System (HBMS). Certain level of correlations between those factors and condition deterioration were found. They are used to evaluate hazard score. Summarizing several hazard factors, final hazard is classified as three level;high, moderate, low. Vulnerability is assessed only by the current state of bridge. Then, risk matrix is suggested for inspection periods. Inspection periods of the bridges with grade C, D, and E are maintained the same as before. But, those of grade A and B with moderate and high hazard score are elongated to maximum 6 years while the maximum inspection period is three years at present. By adjusting inspection period according to risk assessment, it was shown that 27% of average inspection manpower can be saved.

Bridge Scour Prioritization and Management System (I) - System Development - (교량세굴 위험도 결정 및 유지관리 시스템 개발(I) - 시스템 개발 -)

  • Kwak, Kiseok;Park, Jae Hyun;Chung, Moon Kyung;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.187-195
    • /
    • 2006
  • A bridge scour management system is developed to evaluate the vulnerability of bridge piers to scour and to help establish effective disaster measures, taking into account the locality and scour characteristics in Korea. This system is programmed using the techniques of the geographical information system(GIS) for the storage, retrieval, and display of information regarding to bridge scour. The system functions are basically divided into two parts; prioritization and maintenance. Bridges are initially screened and prioritized for bridge scour inspection and evaluation using the basic information which is obtained from the office review. The bridge scour evaluation including site investigation is performed and the vulnerability of bridge piers is categorized into six groups taking into account the local scour depth, foundation bearing capacity, foundation type, foundation depth, and present scour condition. The system tabulates and plots all the data and the results.

Seismic Response Evaluation of Composite Steel-Concrete Box Girder Bridge according to Aging Effect of Piers (교각의 노후도 영향에 따른 강합성 상자형 거더교의 지진응답 평가)

  • Shin, Soobong;Hong, Ji-Yeong;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.319-329
    • /
    • 2020
  • Among the bridges used in Korea, those that are more than 30 years old account for approximately 11% of the total bridges. Therefore, developing a seismic performance-evaluation method is necessary by considering the bridge age. Three composite steel-concrete box girder bridges with port, elastic-rubber, and lead-rubber bearings were selected, and a structural analysis model was developed using the OpenSEESs program. In this study, pier aging was reflected by the reduction in the area of the longitudinal and transverse rebars. Four conditions of 5%, 10%, 25%, and 50% in the degree of pier aging were used. As input earthquakes, 40 near-fault and far-field earthquakes were used, and the maximum displacement and maximum shear-force responses of the piers were obtained and compared. The result shows that as the aging degree increases, the pier strength decreases. Therefore, the pier displacement response increases. To analyze the effects of displacement response and shear resistance, displacement ratio Dratio and shear-force ratio Fratio were evaluated. The older the sample bridge is, the greater is the tendency of Dratio to increase and the smaller is the tendency of Fratio to decrease.