• Title/Summary/Keyword: 광 계수기

Search Result 170, Processing Time 0.026 seconds

Cross Phase Modulation Effects on 120 Gbps WDM Transmission Systems with Mid-Span Spectral Inversion for Compensation of Distorted Optical Pulse (광 펄스 왜곡의 보상을 위해 Mid-Span Spectral Inversion 기법을 채택한 120 Gbps WDM 시스템에서 채널간 상호 위상 변조 현상의 영향)

  • 이성렬;권순녀;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.741-749
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM). The considered system is 120 Gbps (3${\times}$40 Gbps) intensity modulation direct detection(IM/DD) WDM transmission system with path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium in optical phase conjugator(OPC). We use 1 dB eye opening peralty(EOP) in order to evaluate the characteristics of compensation for distorted WDM channels. We confirmed that improvement of transmission distance and performance is achieved by MSSI method to distorted long-haul IM/DD WDM channels due to chromatic dispersion, SPM and XPM. And in the aspect of compensation for distorted pulse due to XPM, the MSSI method is effective to IM/DD WDM transmission system with high fiber dispersion coefficient.

Calculation of Pump Light Power in Wideband Optical Phase Conjugator with Highly-Nonlinear Dispersion Shifted fiber (HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력 계산)

  • 이성렬;이하철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.473-483
    • /
    • 2004
  • In this paper, we numerically investigated the optimum pump light power best compensating for pulse distortion due to both chromatic dispersion and self phase modulation (SPM) as a function of channel input power in 8 channel ${\times}$ 40 Gbps wavelength division multiplexing (WDM systems. Also we investigated the allowable maximum channel input power dependence on modulation format and fiber dispersion coefficient in the various pump light power of OPC. The considered WDM transmission system is based on path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) compensation method, which has highly-nonlinear dispersion shifted fiber (HNL-SDF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that optimal pump light power of HNL-DSF OPC depend on modulation format, initial channel input power, total transmission length and fiber dispersion. But optimal pump light power of HNL-DSF OPC must be selected to make power conversion ratio to almost unity. And we confirmed that, if we allow a 1 dB eye opening penalty (EOP), the tolerable maximum channel input power is increased by using RZ than NRZ as modulation format when pump light power of HNL-DSF OPC is not optimal value but another values.

Compensation of Distorted WDM signals due to Cross Phase Modulation Effects using Mid-Span Spectral Inversion (상호 위상 변조에 의해 왜곡된 WDM 신호의 Mid-Span Spectral Inversion을 이용한 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.128-134
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation (SPM) and cross phase modulation (XPM) as a function of transmission length using mid-span spectral inversion (MSSI) compensation method. The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system. This system has highly nonlinear dispersion shifted fiber (HNL-DSF) as a nonlinear medium in optical phase conjugator (OPC). We confirmed that the transmission length is more increased by applying MSSI to distorted signal due to chromatic dispersion, SPM and XPM as dispersion coefficient of fiber becomes higher. And the compensation degree of distorted WDM channels due to chromatic dispersion, SPM and XPM becomes better stable as dispersion coefficient of fiber becomes higher.

  • PDF

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.

Optimal OPC Position and Fiber Dispersion Coefficients depending on WDM Channel Numbers (WDM 채널수에 따른 최적의 OPC 위치 및 광섬유 분산 계수)

  • Lee, Seong-Real;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 2007
  • In this paper, the optimal position offset of optical phase conjugator (OPC) and the optimal dispersion offsets of fiber sections, which are alternating with the method for the symmetry of optical power and chromatic dispersion with respect to OPC, are numerically investigated as afunction of the WDM channel numbers. The WDM channel numbers are assumed to be 8, 12, 16, 20 and 24. The bit-rate of each channel is assumed to be 40 Gbps for all cases. It is confirmed that the optimal position offset of OPC and optimal dispersion offset of fiber section are gradually increased as the WDM channel numbers are gradually increased. But, the optimal dispersion values of fiber sections per OPC position offset of 1 km are independent on WDM channel numbers, because the optimal position offset of OPC and optimal dispersion offset of fiber section are simultaneously increased as the WDM channel numbers are increased. It is also confirmed that the applying of these optimal parameter values is efficient to WDM system with many channels rather than WDM with small channels.

  • PDF

Application of a Diode Laser Colormetric Spectrometer to Determination of Cetylpyridinium Chloride (다이오드 레이저 비색 분광기를 이용한 Cetylpyridinium Chloride거 농도분석)

  • Keun-Woo Park;Se-Yun Kim;Chul-Min Shin;Jeong-Woon Seo;Hye-Jin Hyun;Hae-Seon Nam;Sung-Ho Kim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.257-259
    • /
    • 2003
  • 본 논문은 다이오드 레이저와 광 다이오드를 사용한 이중 빗살형 다이오드 레이저 비색 분광기를 개발하여 항균 성분의 양이온 계면 활성제로 널리 사용되고 있는 cetylpyridinium chloride(CPC)의 농도를 측정하였다 분광기의 안정도는 광원의 세기, 감도, 재현성을 측정한 예비 실험을 통하여 검증이 되었다 또한 상용화된 UV/VIS분광기와의 비교 결과를 나타내었다. 다이오드 비색 분광기는 3×10/sup -5/M에서 1.1×10/sup -4/M의 CPC 농도 범위에서 0.9635의 상관계수를 나타내었다. 이러한 결과는 CPC의 농도 분석을 위한 간편한 다이오드 레이저 비색 분광기 개발의 가능성을 나타내었다.

  • PDF

An Adaptive Partial Response Equalizer Using Branch Metrics of Viterbi Trellis for Optical Recording Systems (고밀도 광 기록 장치에서 비터비 트렐리스의 가지 메트릭을 이용한 부분 응답 적응 등화기)

  • Lee, Kyu-Suk;Lee, Joo-Hyun;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.871-876
    • /
    • 2005
  • In this paper, we propose an improved partial response maximum likelihood (PRML) detection scheme that has an adaptive equalizer and can be applied in the asymmetric optical recording system with high-density. We confirmed that the proposed PRML detector improves detection performance. In addition, we implemented the detector by Verilog HDL. The adaptive equalizer is composed of tap coefficient updating unit using LMS algorithn and FIR filter. FIR filter is implemented by the transposed direct form architecture for high speed operation. Viterbi detector is implemented by the register exchange method.

Compensation for the Distorted Signals in WDM System with Non Zero-Dispersion Shifted Fiber Using Optical Phase Conjugator (비영 분산 천이 광섬유를 갖는 WDM 시스템에서 광 위상 공액기에 의한 왜곡된 광 신호의 보상)

  • Lee Seong-Real
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.546-555
    • /
    • 2006
  • In this paper, the numerical methods of finding the optimal position of optical phase conjugator(OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero-dispersion shifted fiber(NZ-DSF) as an optical fiber. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with mid-span spectral inversion (MSSI) technique in order to confirm the availability of the proposed methods. It is confirmed that the optimal parameter values induced in this approach are very useful to effectively compensate overall channels in WDM system with OPC. And, it is confirmed that two optimal parameters depend on each other, but less related with the searching procedure. The methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which is a serious problem of applying the OPC into multi-channels WDM system.

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1854-1862
    • /
    • 2006
  • The numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are prosed, which are able to effectively compensate overall channels in $8{\times}40Gbps$Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.

Characteristics of Bit Error Rate dependence on the Position of Optical Phase Conjugator in 320 Gbps WDM System (320 Gbps WDM 전송 시스템에서 광 위상 공액기의 위치에 따른 비트 에러율 특성)

  • Lee Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, optimal position of optical phase conjugator (OPC) for best compensating distorted WDM channels due to both chromatic dispersion and self phase modulation (SPM) in $8{\times}40$ Gbps WDM systems is numerically investigated, and the eye opening penalty (EOP) and bit error rate (BER) characteristics of overall WDM channels at this position is investigated, comparing with that in case of OPC placed at mid-way of total transmission length. It is confirmed that the compensation extents in WDM system with OPC is more improved by the shifting OPC position from the mid-way of total transmission length, depending on the modulation format and fiber dispersion coefficient. Ant it is confirmed that, from a viewpoint of the reception performance, EOP of each channel is more or less different with one another, but the BER characteristics of overall channels are almost equal.