• Title/Summary/Keyword: 광학 지상국

Search Result 12, Processing Time 0.023 seconds

Morphological and Anatomical Response of Rice and Barnyardgrass to Herbicides under Various Cropping Patterns. - III. Response to Propanil (재배양식(栽培樣式)에 따른 수종(數種) 제초제(除草劑)에 대한 벼와 피의 해부형태적(解剖形態的) 반응차이(反應差異) - III. Propanil 에 대한 반응차이(反應差異))

  • Chon, S.U.;Guh, J.O.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Propanil [N-(3,4-dichlorophenyl) propanamide] which was applied at 4,200g ai/hapostemergence 7 days after seeding or transplanting, completely reduced the growth of shoot and root of barnyardgrass at 100% under dry condition while plant height, root length and shoot fresh weight of barnyardgrass at 63, 40 and 78%, respectively under water condition. On the other hand, the herbicide did not affect the growth of shoot and root of rice grown under water condition and transplanting condition, but reduced the plant height, root length and shoot fresh weight of broadcast rice on soil at 24, 18 and 28%, respectively, under dry condition. Microscopically, the epidermal cells of treated-barnyardgrasses under both conditions were severely constricted, chloroplasts in the cells of vascular bunble sheath were partially lacked, and mesophyll cells were often ruptured, whereas those of treated-rice were not affected. Histological observations showed that propanil reduced the thickness of leaf blade of barnyardgrass under both conditions at 36-48% due to mainly reduction and constriction of mesophyll cell, while it did not affect or even increased the thickness of leaves of rice under all conditions compared to control. These results indicate that broadcast rice on soil were more injured than drilled rice in soil under dry condition, however, in the other tested conditions ricer were not affected.

  • PDF

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.