• Title/Summary/Keyword: 광학 모델링

Search Result 151, Processing Time 0.037 seconds

Pointing Accuracy Analysis of Space Object Laser Tracking System at Geochang Observatory (거창 우주물체 레이저 추적 시스템의 추적마운트 지향 정밀도 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Park, Jong-Uk;Choi, Man-Soo;Yu, Sung-Yeol;Park, Eun-Seo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.953-960
    • /
    • 2021
  • Korea Astronomy and Space Science Institute has been verifying the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for not only scientific research but also national space missions. The system employs an optical telescope consisting of a 100 cm primary mirror and an altazimuth mount for fast and precise tracking. The precise pointing and tracking capability in a tracking mount is considered as one of important performance metrics in the fields of automatic tracking and precise application research. So it is required to analyze a mount model for investigating pointing error factors and compensating pointing error. In this study, we investigated various factors causing static pointing errors of tracking mount and analyzed the pointing accuracy of the tracking mount at Geochang observatory by estimating mount parameters based on the least square method.

Kinematic Modelling of the Trot of a Lizard Based on the Motion Capture (모션 캡쳐에 기반한 도마뱀 속보에 대한 기구학적 모델링)

  • Kim, Chang Hoi;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.264-273
    • /
    • 2013
  • The importance of the robots has emerged as the means of minimizing the casualties in the future war, and, thus, the biomimetic robots mimicking the optimized organisms has been actively studied. The robot inspired lizard is suitable for reconnaissance and the surveillance in narrow areas. In this paper, we analyzed the locomotion of a lizard by motion capture system using the infrared markers. We attached 21 markers to the joints of the lizard. By considering the measured data, we analyzed the walking motion of the lizard which trots in a sprawled posture. Moreover, we proposed the 25 dof kinematic model which was able to reproduce the gait of the lizard faithfully. The model was verified by simulations.

System gamma and color temperature correction in low gray level of LCD device by using PLCC model (PLCC모델을 이용한 시스템감마와 저계조의 색온도 보정방법)

  • Kim, Young-Kook;Dhamija, Rohit;Jeon, Byeung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.262-263
    • /
    • 2008
  • LCD 디바이스는 그 동작원리와 전기-광학적 특성에 의해 CRT와는 다른 감마곡선 특성을 갖고 있다. 대부분의 LCD디스플레이 디바이스들의 감마곡선은 CRT와는 달리 일관성을 갖지 않을 뿐 더러 흑백계조입력을 기준으로 하는 감마보정을 위해 RED, GREEN, BLUE 입력값을 세부적으로 조정할 때 각 계조입력에 대한 상관색온도가 일정한 값을 갖지 않아 LCD의 특성에 대한 모델링과 보정에 어려움이 있다. 또한, 애플사의 맥머신 그리고 실리콘 그래픽스사의 시스템과 같이 소정의 감마값을 전제로 해당 시스템의 내부참조테이블(internal look-up table)이 설계되어 각기 다른 시스템감마를 가지는 장치들에 의해 인코딩되어진 영상출력신호의 경우, 동일한 시스템을 갖추거나 시스템감마에 대한 역감마특성을 가진 디스플레이장치가 아닌 환경에서는 원본영상에 대한 왜곡은 더욱 커질 수 있다. 특히, 낮은 흑백계조입력에서의 색온도의 경우, 파장에 따라 서로 다른 감쇄성능을 가진 일반적인 컬러필터의 특성에 의한 누설광(light leakage)에 의해 결정되며, 이로 인해 색온도가 특정한 객을 띄는 현상이 발생한다. 본 논문에서는 LCD디스플레이의 감마곡선을 여러 가지 시스템감마에 대응할 수 있는 감마곡선예 일치시키고, 계조선형성을 동시에 개선하기 위하여 입력 디지털값과 삼자극치간 관계를 나타내는 여러 가지 컬러모델링 방법 중에서 PLCC(Piecewise Linear Interpolation assuming Constant Chromaticity coordinates)모델을 적용하고, 목표로 하는 감마곡선과 색온도를 만족하기 위한 새로운 입력값을 구한 후 이를 컬러참조테이블(color look-up table)예 적용하는 방법과 저계조에서의 색온도를 목표색온도에 근접시키는 방법을 제안한다.

  • PDF

Incremental Image-Based Motion Rendering Technique for Implementation of Realistic Computer Animation (사실적인 컴퓨터 애니메이션 구현을 위한 증분형 영상 기반 운동 렌더링 기법)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Image-based motion capture technology is often used in making realistic computer animation. In this paper we try to implement image-based motion rendering by fixing a camera to a PC. Existing image-based rendering algorithms have disadvantages of high computational burden or low accuracy. The former disadvantage causes too long making-time of an animation. The latter disadvantage degrades reality in making realistic animation. To compensate for those disadvantages of the existing approaches, this paper presents an image-based motion rendering algorithm with low computational load and high estimation accuracy. In the proposed approach, an incremental motion rendering algorithm with low computational load is analyzed in the respect of optimal control theory and revised so that its estimation accuracy is enhanced. If we apply this proposed approach to optic motion capture systems, we can obtain additional advantages that motion capture can be performed without any markers, and with low cost in the respect of equipments and spaces.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.772-772
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.722-733
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

  • PDF

Coastal Shallow-Water Bathymetry Survey through a Drone and Optical Remote Sensors (드론과 광학원격탐사 기법을 이용한 천해 수심측량)

  • Oh, Chan Young;Ahn, Kyungmo;Park, Jaeseong;Park, Sung Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Shallow-water bathymetry survey has been conducted using high definition color images obtained at the altitude of 100 m above sea level using a drone. Shallow-water bathymetry data are one of the most important input data for the research of beach erosion problems. Especially, accurate bathymetry data within closure depth are critically important, because most of the interesting phenomena occur in the surf zone. However, it is extremely difficult to obtain accurate bathymetry data due to wave-induced currents and breaking waves in this region. Therefore, optical remote sensing technique using a small drone is considered to be attractive alternative. This paper presents the potential utilization of image processing algorithms using multi-variable linear regression applied to red, green, blue and grey band images for estimating shallow water depth using a drone with HD camera. Optical remote sensing analysis conducted at Wolpo beach showed promising results. Estimated water depths within 5 m showed correlation coefficient of 0.99 and maximum error of 0.2 m compared with water depth surveyed through manual as well as ship-board echo-sounder measurements.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Simulation of Cholesteric Liquid Crystal Color Filter by Using User-defined Coating Property of an Illumination Design Software (조명 설계 소프트웨어의 사용자 정의 코팅 기능을 사용한 콜레스테릭 액정 컬러 필터 시뮬레이션에 관한 연구)

  • Beom, Tae-Won;Cui, Hao;Lee, Hak-Suk;Yang, Jeong-Mun;Park, Jong-Rak;Yoon, Ki-Cheol;Jang, Won-Gun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.294-301
    • /
    • 2008
  • We have performed modeling and simulations of optical characteristics for a cholesteric liquid crystal (CLC) color filter. Berreman's $4{\times}4$ matrix method was used for the calculation of reflectance spectra of the CLC color filter with respect to the incident angle. The results were employed as input parameters for a user-defined coating property of an illumination design software based on the ray-tracing method, LightTools. Color shift characteristics of a planar transmission-type CLC color filter were simulated using LightTools. The results were compared with the results obtained with Berreman's $4{\times}4$ matrix method. It was found that color shift characteristics of the CLC color filter could be simulated to a reasonable accuracy when the reflectance spectra with less than 5 degrees of incremental incidence-angle were used as the input data for the user-defined coating property of LightTools. We have simulated color shift characteristics of a reflection-type CLC color filter having hemi-spherical patterns. The simulation method reported in this paper has been found to be also used for a non-planar CLC color filter structure.

Implementation of Parallel Computer Generated Hologram Using Multi-GPGPU (다중 GPGPU를 이용한 컴퓨터 생성 홀로그램의 병렬화 구현)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1177-1186
    • /
    • 2014
  • Computer-generated hologram (CGH) is to mathematically model optical phenomenon with digital computer. Because it requires huge amount of computational power, a fast and high performance technique is needed. In this paper, we proposed two parallelizations for CGH calculation. The first is to parallelize CGH algorithm in a GPU (general processing unit) and the second is to parallelize multiple GPUs. The proposed algorithm was implemented in GTX780 Ti GPU. It calculates a $1,024{\times}1,024$ hologram with 10K object points for about 24ms.