자연환경이나 지역생태계는 다양한 요인에 의하여 변화가 일어나지만 그 중에서도 수온의 변화는 하천생태계에서 주변환경에 영향을 미치는 큰 요인 중 하나이다. 하지만 현재까지 수온 변화에 관한 연구는 수온이 하천환경에 미치는 영향력에 비해 활발히 진행되지 못하였다. 이에 본 연구에서는 2015년부터 2021년까지 홍천강의 겨울철 얼음의 면적 변화를 통해 수온의 변화를 연구하고자 한다. 현장조사 결과를 참고하여 광학 위성영상을 분류하였으며, SAR 위성 영상은 GLCM 텍스처 분석법을 이용하여 입력 자료의 한계를 극복하고자 하였다. 사용된 모든 영상의 정확도 검증을 수행한 뒤, 산출된 월 평균 얼음 면적과 인접한 기상대의 기온자료와 비교를 하였다. 수온과 얼음의 면적이 상관관계가 있음을 알 수 있었으며 본 연구결과는 접근이 힘들거나 시스템이 갖춰지지 않은 소규모 하천의 환경변화 연구에 활용할 수 있을 것이다.
위성개발의 궁극적인 목적은 위성으로부터 획득되는 정보의 활용에 있다. 따라서 국가 차원의 위성개발 프로그램은 하드웨어 개발뿐만 아니라 정보 활용을 위한 인프라 구축 및 활용기술 개발도 포함하여야 한다. 지금까지 우리나라는 다양한 위성을 개발하여 기상 및 해양 감시를 비롯하여 각종 재해재난 등에 있어 매우 유용하게 활용해 왔다. 특히 다목적실용위성 영상은 높은 공간해상도를 바탕으로 농업, 산림분야를 비롯하여 해양 분야까지 폭 넓게 활용되어 왔으며, 최근에는 정밀 지도제작 및 변화탐지 등과 관련된 연구에 많이 이용되고 있다. 본 특별호는 최근 다목적실용위성 광학 및 레이더 영상을 활용하여 수행된 다양한 연구사례에 대해서 소개함과 동시에 관련 위성영상 활용기술을 공공부문으로 전파시키는데 목적이 있다.
지진과 화산은 막대한 인적 물적 피해를 발생시킬 수 있는 재해로서 광범위하게 영향을 미치기 때문에 이에 대한 효과적인 모니터링이 요구된다. 위성 자료가 많아지면서 효율적 지진 화산 모니터링을 위한 위성영상 기반의 연구가 많이 발전하고 있다. 위성영상의 종류는 크게 광학, 열적외선, 영상레이더로 구분할 수 있으며 각 위성영상 종류에 따라 서로 다른 특성을 가지고 있다. 여기서는 우선 각 종류별 장점과 단점을 정리하였다. 또한 국내 연구자들에 의해 수행된 위성 영상을 활용한 지진과 화산 관련 연구를 살펴보고 이를 토대로 지진과 화산 재해 대응을 위한 위성 영상의 종류별 활용 방안을 제시하고자 한다.
기존의 식생정보는 대부분 5년 주기로 구축되어 최신성이 결여 되어있다. 식생의 조사는 사진측량과 사람의 현지조사로 이루어지며, 많은 시간과 비용을 소모하게 된다. 식생의 정보 중 식생층위구조에 대한 정보는 산림의 다양성과 환경을 평가하는 중요한 요소이다. 식생의 내부구조인 층위구조는 필수적 정보이지만, 일반적인 사진측량과 사람의 조사로는 한계점이 존재하게 된다. 본 연구에서는 KOMPSAT-3/3A/5 위성영상으로 부터 제작된 지수맵과 Texture맵, DSM(Digital Surface Model)과 DTM(Digital Terrain Model)의 차분으로 생성한 canopy정보를 Input layer로 층위자료를 인공신경망(Artificial Neural Network; ANN)을 이용하여 분류하였다. 단층과 다층의 산림의 층위 구조를 분류하여 최종분류결과 81.59% 확인하였다.
본 연구에서는 1973년 완공된 소양호에 처음으로 발생한 녹조현상에 대하여 위성영상을 사용하여 분석하였다. 연구자료는 2023년 7월부터 약 2개월간의 광학영상 13장을 사용하였으며, 소양호에 발생한 녹조의 면적을 산출하였다. 정확한 녹조 발생 면적을 산출하기 위하여 support vector machine 알고리즘 기반으로 영상분류를 수행하였다. 그 결과 소양호의 녹조는 녹조 발생을 유발하게 한 불순물이 유입된 지점을 중심으로 발생하였다. 2023년 8월 태풍 카눈의 효과로 일시적으로 감소하는 듯 보였으나 지속된 더위로 인해 다시 녹조가 증가하였다. 본 연구결과는 소양호는 수도권 주요 수원지 중 하나로 반복적인 녹조 발생을 대비해야 하는 점을 시사한다.
Multi-temporal optical images have been utilized for time-series monitoring of croplands. However, the presence of clouds imposes limitations on image availability, often requiring a cloud removal procedure. This study assesses the applicability of various machine learning algorithms for effective cloud removal in optical imagery. We conducted comparative experiments by focusing on two key variables that significantly influence the predictive performance of machine learning algorithms: (1) land-cover types of training data and (2) temporal variability of land-cover types. Three machine learning algorithms, including Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF), were employed for the experiments using simulated cloudy images in paddy fields of Gunsan. GPR and SVM exhibited superior prediction accuracy when the training data had the same land-cover types as the cloud region, and GPR showed the best stability with respect to sampling fluctuations. In addition, RF was the least affected by the land-cover types and temporal variations of training data. These results indicate that GPR is recommended when the land-cover type and spectral characteristics of the training data are the same as those of the cloud region. On the other hand, RF should be applied when it is difficult to obtain training data with the same land-cover types as the cloud region. Therefore, the land-cover types in cloud areas should be taken into account for extracting informative training data along with selecting the optimal machine learning algorithm.
한국항공우주연구원은 위성정보활용협의체 소속기관을 대상으로 아리랑위성 시리즈 영상자료 보급 및 활용지원을 담당하고 있다. 협의체 소속기관 사용자들은 대부분 광학 영상 중심으로 위성영상을 활용하고 있으며, 상대적으로 Synthetic Aperture Radar (SAR) 영상에 대한 활용 방안은 미흡한 실정이다. 본 논문에서는 SAR 영상자료 활용을 지원하기 위한 일환으로 향후 개발할 SAR 강도 기반 변화탐지 기술의 결정을 위해 현재까지 연구되어진 SAR 강도 기반 변화탐지 기술과 그 활용사례들을 조사했다. 조사 결과 많은 연구자로부터 강도 차분, 상관계수, 히스토그램(Histogram) 또는 편파 정보를 활용하여 변화 픽셀을 탐지하고 분석하기 위한 다양한 알고리즘들과 도시, 홍수, 산불, 식생과 같은 다양한 분야에서 변화탐지 알고리즘의 활용방안이 연구되었음을 확인할 수 있었다. 본 연구는 위성정보활용협의체에 활용할 SAR 변화탐지 기술 개발에 활용할 예정이다.
대기중의 꽃가루는 생물학적으로 발생하는 자연현상이며, 꽃가루 입자 자체는 태양복사전달과정에 영향을 미치며, 시정을 악화시키는 등 대기환경을 저해하고, 건강문제에 부정적인 영향을 주기도 한다. 꽃가루에 대한 연구는 주로 꽃가루의 이동과 확산, 그리고 건강에 미치는 영향에 대해 이루어져 왔으나 대기 에어러솔로서 광학적 특성 및 기후변화에 미치는 영향에 대한 연구는 아직 미비하다. 본 연구의 목적은 대기 중에서 꽃가루의 시간적 및 수직적 분포를 분석하는 것과 꽃가루의 증가로 인한 대기 에어러솔 광학적 특성변화를 분석하는 것으로서, 광주지역에서 고농도의 꽃가루 현상이 발생한 2009년 5월 5일부터 5월 7일 까지 라이다(Lidar)와 Cimel 선포토미터(sunphotometer)를 이용한 집중 관측을 수행하였다. 꽃가루는 주로 일출 후 대기 중에서 관측되기 시작하여 정오경에 대기경계층 고도 이하 (<약 1.5 km)까지 분포하다 일몰 후 사라지는 일변화를 보였으며, 꽃가루의 일평균 광학적 두께는 5, 6, 그리고 7일에 각각 0.036, 0.021, 그리고 0.019로 전체 대기 에어러솔에서 꽃가루가 차지하는 비율은 1 - 16 %로 정오경에 가장 높은 비율을 보였다. 이러한 연구결과를 살펴볼 때, 봄 철의 높은 꽃가루 농도는 대기 에어러솔의 주요한 요소로 작용할 수 있으며, 위성, 선포토미터 등의 원격 탐사 장비를 이용한 대기 에어러솔 관측 시 영향을 고려해야 할 요소임을 증명하였다.
도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.
동해에서 CDOM의 광학적 특성과 순환을 이해하기 위하여 MODIS의 원격탐사반사도($R_{rs}$)를 이용한 기존의 CDOM 흡광계수 추정 알고리즘들(Semi-Algorithms (3개), Empirical-Algorithms (3개))을 현장관측 자료와 비교 평가하였다. 2009년부터 2011년까지 총 7번의 현장 관측 자료는 연안 해역에서부터 외양의 다양한 해양환경을 포함하고 있다. 본 연구 결과, 동해에서 Quasi-Analytical Algorithm (QAA_v5) 이 현장 $a_{CDOM}$(412) 값을 가장 유사하게 추정하였다. Quasi-Analytical Algorithm (QAA_v5) 알고리즘을 기준으로 Semi-analytical 알고리즘은 과소추정하는 경향을 보였다. 그러나 Empirical 알고리즘은 과대추정하는 경향을 보였다. $a_{CDOM}$(412)의 값이 높은 곳에서 위성관측 엽록소-a (Chlorophyll-a)의 값도 높았다. 이 결과는 CDOM이 엽록소-a의 함량 추정에 영향을 줄 수 있다는 가능성을 제시한다. 본 연구 결과는 세계최초 정지궤도 해색위성인 GOCI의 CDOM 알고리즘을 개선하는데 기초자료로 활용될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.