• Title/Summary/Keyword: 광펜톤산화반응

Search Result 3, Processing Time 0.016 seconds

Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide (과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.

Photo-Fenton Oxidation Treatment of Pilot Scale for the Decomposition of 1,4-dioxane Generated in a Polyester Manufacturing Process (폴리에스테르 중합 공정에서 발생되는 1,4-dioxane의 분해를 위한 파일럿 규모의 광펜톤산화처리)

  • So, Myung-Ho;Han, Ji-Sun;Han, Thi-Hiep;Seo, Jang-Won;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • In this research, a polyester manufacturing company (i.e. K Co.) in Gumi, South Korea was investigated regarding the release of high concentrations of 1,4-dioxane(about 600 mg/L) and whether treatment prior to release should occur to meet with the level of the regulation standard (e.g., 5 mg/L in 2011). The pilot-scale (reactor volume, 10 $m^3$) treatment system using Photo-Fenton Oxidation was able to remove approximately 90% of 1,4-dioxane under the conditions that concentrations of 2,800 ppm $H_2O_2$ and 1,400 ppm $FeSO_4$ were maintained along with 10 UV-C lamps (240 ${\mu}W/cm^2$) illuminated during aeration. However, the effluent concentration of 1,4-dioxane was still high at about 60 mg/L. Thus, further investigation is needed to see whether the bench scale (reactor volume, 8.9 L) of activated sludge could facilitate the decomposition of 1,4-dioxane. As a result, 1,4-dioxane in the effluent has been decreased as low as about 2~3 mg/L. Consequently, Photo-Fenton Oxidation coupled with activated sludge process can make it possible to efficiently decompose 1,4-dioxane to keep up with that of the regulation standard.

A Study on the degradation of Lindane in water by a Photo-Fenton process and a UV/$H_2O_2$ process (Photo-Fenton 공정과 UV/$H_2O_2$ 공정을 이용한 Lindane의 분해특성 비교 연구)

  • Lee, Ju-Hyun;Choi, Hye-Min;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2010
  • In the present study, the degradation characteristics of Lindane by Advanced Oxidation Processes(UV/$H_2O_2$, Photo-Fenton process) were studied. The degradation efficiency of Lindane in aqueous solution was investigated at various initial pH values, Fenton's reagent concentrations and initial concentrations of Lindane. GC-ECD was used to analyze lindane. Lindane has not been degraded without application of AOPs over two hours. But, approximately 5% of lindane was degraded with UV or $H_2O_2$ alone. Lindane with UV/$H_2O_2$ process showed approximately 7% higher removal efficiency than $H_2O_2$ process. In the UV/$H_2O_2$ process, the pH values did not affect the removal efficiency. The optimal mole ratio of $H_2O_2/Fe^{2+}$ for lindane degradation is about 1.0 in Photo-Fenton process. Also, the experimental results showed that lindane removal efficiency increased with the decrease of initial concentration of lindane. Under the same conditions, the order lindane of removal efficiency is as following : Photo-Fenton process > UV/$H_2O_2$ process > $H_2O_2$ process. In addition, intermediate products were identified by GC-MS techniques. Than PCCH(Pentachlorocyclohexene) was identified as a reaction intermediate of the Photo-Fenton process.