• Title/Summary/Keyword: 광중합형 복합레진 색조

Search Result 4, Processing Time 0.017 seconds

A Study on Color Differences Between Composite Resins and Shade Guides (복합레진과 shade guide의 색차에 관한 연구)

  • Kim, Hee-Sun;Um, Chung-Moon;Kahng, Myong-Whai
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.107-120
    • /
    • 1996
  • 복합레진은 조작이 용이하고 강도가 우수하며 중합시간이 짧고 법랑질과 상아질에 접착이 가능하며 연마성이 뛰어나고 자연스러운 색상을 나타내므로 심미적 수복에 가장 일반적으로 선택되는 재료의 하나이다. 대부분의 복합레진 kit에는 shade guide가 포함되어 있어 이를 기준으로 중합된 후의 복합레진 색조를 예상하여 선택하게 된다. 그러나 이러한 shade guide들은 대개 복합레진이 아닌 plastic으로 제조된 것으로 중합된 복합레진의 실제 색조와는 차이가 생기게 되며 결국 shade guide 자체의 문제점으로 인해 이상적인 색조선택이 어려워진다. 이에 본 연구에서는 국내에 시판되고 있는 5종의 복합레진 제품을 선정하여 분광 광도계를 이용해서 shade guide와 중합된 복합레진 사이의 색조차이를 측정, 비교 연구하였다. 직경 16mm. 두께 1.6mm의 plastic mold에 5종의 광중합형 복합레진(Z100, Prisma TPH, Tetric, Silux Plus, Herculite XR)을 충전하고 응축기에 넣어 압축한 후 제조사의 지시에 따라 광중합기로 중합시킨 후 mold에서 시편을 제거하여 보관했다가 젖은 sandpaper 상에서 순차적으로 연마하였다. shade guide는 step부분을 갈아내어 복합레진 시편과 동일한 두께로 만든후 연마하였다. 분광광도계에 shade guide를 넣고 CIE illuminant D65 하에서 spectral reflectance를 측정하고 해당 색조의 복합레진 시편도 통일한 방법으로 측정하고 $L^*$, $a^*$, $b^*$값과 ${\Delta}E^*$값을 얻은후 분석하여 다음과 같은 결과를 얻었다. 1. Z100의 D3, A3, B2 shade와 Prisma TPH의 B2 shade를 제외한 모든 시편에서 shade guide와 복합레진간에 육안으로 인지할 수 있는 색차(${\Delta}E^*$ > 1.0)가 관찰되었다. 2. 평균적으로 Z100이 가장 적은 색차를 나타내었고 Prisma TPH, Tetric, Silux Plus, Herculite XR 순으로 색차가 증가하였다. 3. Prisma TPH의 A2 shade. Tetric의 W shade. Silux Plus의 YB, U shade, Herculite XR의 L, LY shade는 ${\Delta}E^*$값이 3.3 이상으로 나타났다. 4. Z100, Prisma TPH, Tetric, Silux Plus에서는 복합레진보다 shade guide가 더 높은 $L^*$값을 보이는 경향이 나타났으며, Herculite XR에서만 복합레진이 더 높은 $L^*$값을 나타냈다. 5. 모든 시편에서 $b^*$ 값은 (+)로 관찰되었고, Z100, Prisma TPH, Tetric, Silux Plus의 shade guide는 복합레진에 비해 높은 $b^*$값을 보였다. 6. 모든 시편에서 $a^*$값은 (-)로 관찰되었고. Herculite XR 및 Silux Plus에서는 복합레진이 shade guide 에 비 해 낮은 $a^*$값을 나타냈다.

  • PDF

Effects of the color components of light-cured composite resin before and after polymerization on degree of conversion and flexural strength (광중합형 복합레진의 중합 전, 후의 색 성분이 중합률과 굴곡강도에 미치는 영향)

  • Yoo, Ji-A;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.324-335
    • /
    • 2011
  • Objectives: This study investigated the effects of the color components of light-cured composite resin before and after polymerization on degree of conversion (DC) and biaxial flexural strength (FS). Materials and Methods: Four enamel shades (A1, A2, A3, A4) and two dentin shades (A2O, A3O) of Premisa (Kerr Co.) and Denfil (Vericom Co.) were evaluated on their CIE $L^*,\;a^*,\;b^*$ color components using the spectrophotometer before curing, after curing and at 7 day. The DC of same specimens were measured with Near-infrared spectrometer (Nexus, Thermo Nicolet Co.) at 2 hr after cure and at 7 day. Finally, the FS was obtained after all the other measurements were completed at 7 day. The correlations between each color component and DC and FS were evaluated. Results: The light-curing of composite resin resulted in color changes of Premisa in red-blue direction and Denfil in green-blue direction. The DC and FS were affected by product, time and shade (3-way ANOVA, p < 0.05) and product and shade (2-way ANOVA, p < 0.05), respectively. Premisa only showed a significant correlation between the DC and CIE $a^*$ component - before and after polymerization (Pearson product moment correlation, p < 0.05). The FS of Premisa showed significant negative correlations with CIE $a^*$ and CIE $b^*$ components. Conclusions: The DC and FS of the light-curing composite resin were affected by the color components of the material before and after polymerization.

A Spectrophotometric Study on Color Differences between Various Light-Cured Composite Resins and Shade Guides (광중합형 복합레진과 shade guide의 색차에 관한 연구)

  • Lim, Kyung-Min;Lee, Min-Ho;Song, Kwang-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The composite resin, due to its esthetic quality, is considered the material of choice for restoration of anterior teeth. To get a satisfactory result in the composite resin restorations, it is necessary to choose right shade. At present, most of the commercial composite resins are based on the Vita Lumin shade guides or shade guides that are provided by their company, but color differences among them might be expected even using the same shade in various materials. This study is to measure color differences between various light-cured composite resins and shade guides and to provide the clinicians with information which may aid in improved color match of esthetic restoration. Four kinds of light-cured composite resins (Gradia Direct (GD), Z250 (Z250), Clearfil AP-X (AP-X), Esthet X (E X)) and shade guides with A2 and A3 shade were used. Three specimens of each material and one specimen of each shade guide were made. Each composite resin was filled into the Teflon mold (1.35 mm depth, 8 mm diameter), followed by compression, polymerization and polishing with wet sandpaper. Shade guides were grinded with polishing stones and rubber points to a thickness of approximately 1.35 mm. Color characteristics were performed with a spectrophotometer(color i5, GretagMacbeth, USA). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E^*ab$) between composite resins and shade guides. CIE standard D65 was used as the light source. The results were as follows : 1. Among the $L^*$, $a^*$, $b^*$ values of most of 4 kinds of composite resin specimens which are produced by same shade, there were significant differences(p<0.05). 2. Among all 4 kinds of composite resin specimens which are produced by same shade, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 3. Between most of composite resin specimens investigated and their corresponding shade guides, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 4. In the clinical environment, it is recommended that custom shade guides be made from resin material itself for better color matching. Shade guides supplied by manufacturers or Vita Lumin shade guide may not provide clinicians a accurate standard in matching color of composite resins, and there are perceptible color differences in most of products. Therefore, it is recommended that custom shade guides be made from resin material itself and used for better color matching.

Color evaluation of low viscosity bulk-fill resin with composite resin capping layer (저점도 벌크필레진과 복합레진 적층수복물의 색조 평가)

  • Yun, Jonghyeon;Jung, Ji-Hye;Chang, Hoon-Sang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.294-300
    • /
    • 2015
  • Purpose: The purpose of this study was to measure the color of low viscosity bulk-fill resin with a capping layer and to compare it with the color of microhybrid composite resin. Materials and Methods: A low viscosity bulk-fill resin (SDR) and microhybrid composite resin of shade A2 (A2) or A3 (A3) were fabricated to 4 mm thickness and light cured for 20 seconds. CIE $L^*a^*b^*$ values of the resin specimens were measured with a colorimeter. Then shade A2 and A3 microhybrid composite resin was capped over low viscosity bulk-fill resins in 2 mm thickness (SA2, SA3). The resin specimens were light cured for 20 seconds and the color was measured and analyzed (n = 10). Color differences (${\Delta}E$) between SA2 and A2, SA3 and A3 were also calculated. Results: $L^*$ value was highest in SDR followed by SA2 and SA3. $L^*$ value of A2 and A3 was the lowest. $a^*$ value was lowest in SDR followed by SA2 and SA3, and A2 and A3 was the highest. $b^*$ value was lowest in SDR followed by A2 and SA2, and A3 and SA3 was the highest. ${\Delta}E$ between A2 and SA2 (${\Delta}E=3.4$), and that between A3 and SA3 (${\Delta}E=3.1$) was lower than the perceptible color difference threshold of ${\Delta}E=3.7$. Conclusion: ${\Delta}E$ between low viscosity bulk-fill resin with a capping layer and microhybrid resin was lower than the perceptible color difference threshold.