• Title/Summary/Keyword: 광전자 분광법

Search Result 168, Processing Time 0.027 seconds

Effect of Post-annealing on the Interfacial adhesion Energy of Cu thin Film and ALD Ru Diffusion Barrier Layer (후속 열처리에 따른 Cu 박막과 ALD Ru 확산방지층의 계면접착에너지 평가)

  • Jeong, Minsu;Lee, Hyeonchul;Bae, Byung-Hyun;Son, Kirak;Kim, Gahui;Lee, Seung-Joon;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • The effects of Ru deposition temperature and post-annealing conditions on the interfacial adhesion energies of atomic layer deposited (ALD) Ru diffusion barrier layer and Cu thin films for the advanced Cu interconnects applications were systematically investigated. The initial interfacial adhesion energies were 8.55, 9.37, $8.96J/m^2$ for the sample deposited at 225, 270, and $310^{\circ}C$, respectively, which are closely related to the similar microstructures and resistivities of Ru films for ALD Ru deposition temperature variations. And the interfacial adhesion energies showed the relatively stable high values over $7.59J/m^2$ until 250h during post-annealing at $200^{\circ}C$, while dramatically decreased to $1.40J/m^2$ after 500 h. The X-ray photoelectron spectroscopy Cu 2p peak separation analysis showed that there exists good correlation between the interfacial adhesion energy and the interfacial CuO formation. Therefore, ALD Ru seems to be a promising diffusion barrier candidate with reliable interfacial reliability for advanced Cu interconnects.

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties (탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향)

  • Choi, Ye Ji;Lee, Kyeong Min;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with $O_2:F_2=1:9vol%$ exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.

A Study on the Physical Properties of a Compound Using the Crosslinking of Vinylized-mesoporous Silica and Regenerated Polyethylene (비닐화 실란이 도입된 메조포러스 실리카와 재생 폴리에틸렌의 가교결합을 이용한 컴파운드의 물성 연구)

  • Tae-Yoon Kim;Hyun-Ho Park;Chang-Seop Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.420-428
    • /
    • 2023
  • Crosslinking was introduced into vinylized-mesoporous silica and recycled polyethylene. By introducing a vinyl group into the mesoporous silica, it becomes a material capable of inducing cross-linking with non-polar polyethylene. By synthesizing vinylized-mesoporous silica and inducing crosslinking with recycled polyethylene, a recycled polyethylene composite with improved physical properties than existing recycled polyethylene was synthesized. In addition, even when a small amount is added according to the grade of recycled polyethylene using vinylized-mesoporous silica, the crosslinking reaction proceeds and all physical properties are improved. Four types of vinylized-mesoporous silica were synthesized, and the shape, microstructure, and functional groups were analyzed by TEM, BET, FT-IR, and XRD. Using vinylized-mesoporous silica, three types of compounds were blended by crosslinking reaction with recycled polyethylene. In order to confirm the presence or absence of crosslinking, analysis was performed using XPS and FT-IR, and physical properties such as tensile strength, elongation, flexural strength, and flexural modulus were confirmed using a universal testing machine. As a result, by applying vinylized-mesoporous silica to recycled polyethylene in various grades, the weak physical properties of existing recycled polyethylene were overcome. By applying the vinylized-mesoporous silica, recycled polyethylene composite material that overcomes the weak physical properties to the normal polyethylene, it shows the optimal physical property index that can be used commercially. Therefore, it is expected that it can potentially increase the use of recycled polyethylene and recycle resources.

Surface Analysis Study on ZIRLO Cladding Hulls Oxidized at Low Temperatures (저온 산화된 ZIRLO 피복관의 표면분석 연구)

  • Jeon, Min Ku;Choi, Yong Taek;Lee, Chang Hwa;Kang, Kweon Ho;Park, Geun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Surface oxidation behavior of ZIRLO (ZIRconium Low Oxidation) hulls was investigated using an X-ray photoelectron spectroscopy (XPS) technique. The effects of oxidation time (10-336 h at $500^{\circ}C$) and temperature ($400-700^{\circ}C$ for 10 h) were studied. Deconvolution results of the hulls oxidized at $500^{\circ}C$ revealed that a $ZrO_2$ phase appeared after 24 h (11.86%), and an increase in the $ZrO_2$ ratio was observed when the hulls were oxidized for 336 h (17.93%). On the other hand, the ZrO phase which employed 5.68% in the 10 h oxidized sample disappeared when the oxidation time increased to 24 h. The XPS results also showed that an increase in the oxidation temperature resulted in an increase in the ratio of ZrO, which increased from 0 to 5.68, 8.31, and 9.16% when the oxidation temperature increased from 400 to 500, 600, and $700^{\circ}C$, respectively. $ZrO_2$ phase was observed only in the sample that was oxidized at $700^{\circ}C$. The mechanism of ZrO formation was not conclusive, but it was suggested that a formation of hydroxide might have been accelerated at elevated temperatures leading to a formation of a $Zr(OH)_4$ phase. The relationship between the surface oxidation status of the hulls oxidized at $500^{\circ}C$ and their chlorination reaction feasibility was discussed, and it was suggested that the thickness of the oxide layer is an important parameter that determines the chlorination reaction feasibility.

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Effects of acid-treatment conditions on the surface properties of the RBM treated titanium implants (산-처리 조건이 RBM처리한 티타늄 임플란트의 표면 특성에 주는 영향)

  • Lee, Han-Ah;Seok, Soohwang;Lee, Sang-Hyeok;Lim, Bum-Soon
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.257-274
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of acid-treatment conditions on the surface properties of the RBM (Resorbable Blast Media) treated titanium. Disk typed cp-titanium specimens were prepared and RBM treatments was performed with calcium phosphate ceramic powder. Acid solution was mixed using HCl, $H_2SO_4$ and deionized water with 4 different volume fraction. The RBM treated titanium was acid treated with different acid solutions at 3 different temperatures and for 3 different periods. After acid-treatments, samples were cleaned with 1 % Solujet solution for 30 min and deionized water for 30 min using ultrasonic cleanser, then dried in the electrical oven ($37^{\circ}C$). Weight of samples before and after acid-treatment were measured using electric balance. Surface roughness was estimated using a confocal laser scanning microscopy, crystal phase in the surface of sample was analyzed using X-ray diffractometer. Surface morphology and components were evaluated using Scanning Electron Microscope (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray Photoemission Spectroscopy (XPS). Values of the weight changes and surface roughness were statistically analyzed using Tukey-multiple comparison test (p=0.05). Weight change after acid treatments were significantly increased with increasing the concentration of $H_2SO_4$ and temperature of acid-solution. Acid-treatment conditions (concentration of $H_2SO_4$, temperature and time) did not produce consistent effects on the surface roughness, it showed the scattered results. From XRD analysis, formation of titanium hydrides in the titanium surface were observed in all specimens treated with acid-solutions. From XPS analysis, thin titanium oxide layer in the acid-treated specimens could be evaluated. Acid solution with $90^{\circ}C$ showed the strong effect on the titanium surface, it should be treated with caution to avoid the over-etching process.