• Title/Summary/Keyword: 광용적 맥파

Search Result 18, Processing Time 0.025 seconds

A study for measurement of radial artery oxygen saturation system using photoelectric plenthysmography (광전용적맥파를 이용한 요골동맥 산소포화도 측정 시스템의 연구)

  • Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.11-18
    • /
    • 2010
  • In this study, the pulse of radial artery and oxygen saturation are detected using photoelectric plethysmograph method. Using our device designed reflection type, we can detect the reflected light by radial artery and by switching circuit, we can also separate to 625nm band signal and 940nm band signals. The separated signals are converted as a pulse data by the pulse signal processing circuit. In this study, the reflection type of oxygen saturation calculation method is applied instead of the transmission type because of the reflection type sensor is used to measure the radial artery. As a result, we can detect about 97% accuracy of the oxygen saturation compare with the conventional method. For the accurate signals, the wrist band with sensor was designed and fixed on the radial artery. As a result, this wrist band type sensor was applicable to prevent position errors from motion artifact and could increase the accuracy during the measuring.

Design of Tag to Measure Biomedical Signal for Interfacing with Smart phone (스마트 폰 연동형 생체신호 측정 태그 설계)

  • Kwon, Eon-hyeok;Lee, Dong-chang;Jo, Su-hyun;Lee, Ju-won;Nam, Jae-hyun;Park, Hee-jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.819-821
    • /
    • 2014
  • This study is proposed the design method of tag to measure biomedical signal for interfacing with smart phone. The measurable physiological signals are ECG and PPG. On the smart phone by using the measured signals, we have designed the tag that can extract parameters such as heart rate, heart rate distribution, mean blood pressure, arterial stiffness, autonomic nervous balance. By using the estimated medical informations from this tag, One's health status will be able to manage one.

  • PDF

An Program for Detection and Manual Correction of Specific Feature of Heart Beat (심박동 특징점 검출 및 수동 보정을 위한 프로그램)

  • Shin, Hangsik;Kang, Seongtak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1826-1829
    • /
    • 2015
  • 본 연구는 측정된 심전도와 광용적맥파의 박동특징점을 무결하게 검출하기 위한 프로그램 개발에 관한 것이다. 개발된 프로그램은 생체신호 계측기에서 측정된 생체신호 데이터를 자동 및 수동으로 분석하여 박동특징점의 시간 및 값 정보를 추출 및 저장하는 프로그램으로, 측정된 파형 및 검출된 특징점 위치, 인접한 특징점간 시간 간격을 시각적으로 전달할 수 있는 GUI(Graphic User Interface)를 포함한다. 개발된 프로그램은 기존 연구에서 제시된 심박동, 맥파의 박동 특징점 거출 알고리즘을 사용하여 최초 검출을 수행하고, GUI와 연동되는 컨텍스트 메뉴를 통해 오검출 또는 미검출 정보를 효율적으로 수정할 수 있도록 함으로 비전문가에 의한 쉽고 효율적인 사용이 가능하다.

Design and Implementation of a Prediction System for Cardiovascular Diseases using PPG (PPG를 이용한 심혈관 질환 예측 시스템의 설계 및 구현)

  • Song, Je-Min;Jin, Gye-Hwan;Seo, Sung-Bo;Park, Jeong-Seok;Lee, Sang-Bock;Ryu, Keun-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • Photoplethysmogram(PPG) is the method to obtain the biomedical signal using the linear relationships between the blood volume for changing the cardiac contraction and relaxation and the amount of light for absorbing the hemoglobin in the blood. In this paper, we proposed the analyzed results which show the heart rate variability and the distribution of heart rate for before and after using PPG. Moreover, this paper designed and implemented the system based on personal computer to predict cardiovascular disease in advance using the analyzed results for the autonomic balance from taking the spectral analysis of heart rate and the state of the blood vessel for analyzing APG(acceleration plethysmogram).

Design of Filter to Remove Motionartifacts of Photoplethysmography Based on Indepenent Components Analysis and Filter Banks (독립성분 분석법과 필터뱅크를 기반한 PPG 신호의 동잡음제거 필터 설계)

  • Lee, Ju-won;Lee, Byeong-ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1431-1437
    • /
    • 2016
  • In mobile healthcare device, when to measure the heart rate by using the PPG signal, its performance is reduced according to the motion artifacts that is the movement of user. This is because the frequency range of motion (0.01-10 Hz) and that of PPG signals overlap. Also, the motion artifacts cannot be rectified by general filters. To solve the problem, this paper proposes a method using filter banks and independent component analysis (ICA). To evaluate the performance of the proposed method, we were artificially applied various movements and compared heart rate errors of the moving average filter and ICA. In the experimental results, heart rate error of the proposed method showed very low than moving average filter and ICA. In this way, it is possible to measure stable heart rate if the proposed method is applied to the healthcare terminal design.

Design of Filter to Remove Motion Artifacts of Photoplethysmography Signal Using Adaptive Notch Filter and Fuzzy Inference system (적응 노치필터와 퍼지추론 시스템을 이용한 광용적 맥파 신호의 동잡음 제거 필터 설계)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • When PPG signal is used in mobile healthcare devices, the accuracy of the measured heartbeat decreases from the influence by the movement of the user. The reason is that the frequency band of the noise overlaps the frequency band of the PPG signal. In order to remove these same noises, the methods using frequency analysis method or application of acceleration sensor have been investigated and showed excellent performance. However, in applying these methods to low-cost healthcare devices, it is difficult to apply these methods because of much processing time and sensor's cost. In order to solve these problems, this study proposed the filter design method using an adaptive notch filter and the fuzzy inference system to extract more accurate heart rate in real time and evaluated its performance. As results, it showed better results than the other methods. Based on the results, when applying the proposed method to design the mobile healthcare device, it is possible to measure the heartbeat more accurately in real time.

A Study on the Quantitative Pulse Type Classification of the Photoplethysmography (광용적맥파의 정량적 맥파형 분류에 관한 연구)

  • Jang, Dae-Jeun;Farooq, Umar;Park, Seung-Hun;Hahn, Min-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.328-334
    • /
    • 2010
  • Over the past few years, a considerable number of methods have been proposed and applied for the classification of photoplethysmography (PPG). Most of the previous studies, however, focused on the qualitative description of the pulse type according to specific disease and thus provided ambiguous criteria to interpreters. In order to screen out this problem, we present a quantitative method for the pulse type classification including the second derivative of photoplethysmography (SDPTG). In the PPG signal, we have classified the signal as 4 types using the position and the presence of the dicrotic wave. In addition, we have categorized the SDPTG signal as 7 types using the position and the presence of "c" and "d" wave and the sign of "c" wave. In order to check the efficacy of the proposed pulse type classification rule, we collected pulse signals from 155 subjects with different ages and sex. From the correlation analysis, Class 1(p<0.01) and Class 2(p<0.01) in the PPG signal are significantly correlated with ages. In a similar manner Class A(p<0.01), Class C(p<0.05), Class D(p<0.01), and Class F(p<0.01) in the SDPTG signal are considerably correlated with the ages. From these observations, and some earlier ones [4], [5], we can conclude that since the newly proposed method has objectivity and clarity in pulse type classification, this method can be used as an alternative of previous classification rules including similar age-related characteristics.

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.