• Title/Summary/Keyword: 광섬유 광학

Search Result 867, Processing Time 0.024 seconds

Linewidth Reduction of a Yellow Laser by a Super-cavity and the Measurement of the Cavity Finesse (초공진기를 이용한 노란색 레이저의 선폭 축소 및 초공진기의 예리도 측정)

  • Lee, Won-Kyu;Park, Chang-Yong;Park, Sang-Eon;Ryu, Han-Young;Yu, Dai-Hyuk;Mun, Jong-Chul;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2010
  • Sum frequency generation was utilized to obtain a yellow laser with the wavelength of 578.4 nm for a probe laser of an Yb lattice clock. The output of an Nd:YAG laser with wavelength of 1319 nm and that of an Yb-fiber laser with wavelength of 1030 nm were passed through a waveguided periodically-poled lithium niobate (WG-PPLN) for sum frequency generation. It is required that the probe laser has a linewidth of the order of 1 Hz to fully resolve the Yb lattice clock transition. Thus, the linewidth of the probe laser was reduced by stabilizing the frequency to a super-cavity. This was made of ULE with a low thermal expansion coefficient, and was mounted on an active vibration-isolation table at the optimal point for the reduced sensitivity to vibration. Also, this was installed in a vacuum chamber, and the temperature was stabilized to 1 mK level. This system was installed in an acoustic enclosure to block acoustic noise. The finesse of the super-cavity was measured to be 380 000 from the photon life time of the cavity.

Hybrid CMA-ES/SPGD Algorithm for Phase Control of a Coherent Beam Combining System and its Performance Analysis by Numerical Simulations (CMA-ES/SPGD 이중 알고리즘을 통한 결맞음 빔 결합 시스템 위상제어 및 동작성능에 대한 전산모사 분석)

  • Minsu, Yeo;Hansol, Kim;Yoonchan, Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, we propose a hybrid phase-control algorithm for multi-channel coherent beam combining (CBC) system by combining the covariant matrix adaption evolution strategy (CMA-ES) and stochastic parallel gradient descent (SPGD) algorithms and analyze its operational performance. The proposed hybrid CMA-ES/SPGD algorithm is a sequential process which initially runs the CMA-ES algorithm until the combined final output intensity reaches a preset interim value, and then switches to running the SPGD algorithm to the end of the whole process. For ideal 7-channel and 19-channel all-fiber-based CBC systems, we have found that the mean convergence time can be reduced by about 10% in comparison with the case when the SPGD algorithm is implemented alone. Furthermore, we analyzed a more realistic situation in which some additional phase noise was introduced in the same CBC system. As a result, it is shown that the proposed algorithm reduces the mean convergence time by about 17% for a 7-channel CBC system and 16-27% for a 19-channel system compared to the existing SPGD alone algorithm. We expect that for implementing a CBC system in a real outdoor environment where phase noise cannot be ignored, the hybrid CMA-ES/SPGD algorithm proposed in this study will be exploited very usefully.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

A STUDY ON THE EFFECT OF THE ND:YAG LASER IRRADIATION ON THE MECHANICALLY EXPOSED PULP (기계적 노출치수의 Nd:YAG 레이저 조사효과에 대한 연구)

  • Lee, Sang-Ho;Lee, Chang-Seop;Kim, Su-Gwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.146-158
    • /
    • 2002
  • The purpose of this study was to investigate the effects of Nd:YAG laser on mechanically exposed pulp of dog by the observation of pulpal inflammatory change and heal process including dentinal bridge, structural changes of fibroblasts of thr remaining vital pulp tissue. In experimental group 1, the exposed pulps were irradiated with Nd:YAG laser(3W, 30Hz, 0.2sec) for $2{\sim}3$ second followed by capped with aluminium tin foil. In group 2 and group 3, the exposed pulps were irradiated with Nd:YAG laser via contact(Group 2) and non-contact(Group 3) methods followed by capped with calciumhydroxide paste. The animal were sacrificed at the intervals of 3, 7, 14 and 30days for histologic evaluation. The results were as follows : 1. The dentinal bridges were formwd more fast and broadly in the experimental group 1 and 2 than other groups, but there were no histologic differences in the degree of their formation among control group, experimental group 1. 2. Odontoblastic activities at amputated pulp was increased in the experimental group 2, 3 than other group but there no histologic difference in the odontblastic activitiy among control group, experimental group 1. 3. The infalmmation was severe at the postoperative 1 week of all groups, but its condition subsideed with time elapsed. At the postoperative 3, 7 days, its condition in experimental group 2, 3 were less severe than in the group 1. 4. There were no histologic differences between the experimental group 2 and 3 according to the degree of dentin bridge formation.

  • PDF

Optogenetics: a New Frontier for Cell Physiology Study (광유전학: 세포 생리 연구를 위한 새로운 frontier)

  • Byun, Jonghoe
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.953-959
    • /
    • 2015
  • Optogenetics is the combination of optical and molecular strategies to control designated molecular and cellular activities in living tissues and cells using genetically encoded light-sensitive proteins. It involves the use of light to rapidly gate the membrane channels that allows for ion movement. Optogenetics began with the placing of light-sensitive proteins from green algae inside specific types of brain cells. The cells can then be turned on or off with pulses of blue and yellow light. Using the naturally occurring algal protein Channelrhodopsin-2 (ChR2), a rapidly gated light-sensitive cation channel, the number and frequency of action potentials can be controlled. The ChR2 provides a way to manipulate a single type of neuron while affecting no others, an unprecedented specificity. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers. An improbable combination of green algae, lasers, gene therapy and fiber optics made it possible to map neural circuits deep inside the brain with a precision that has never been possible before. This will help identify the causes of disorders like depression, anxiety, schizophrenia, addiction, sleep disorder, and autism. Optogenetics could improve upon existing implanted devices that are used to treat Parkinson’s disease, obsessive-compulsive disorder and other ailments with pulses of electricity. An optogenetics device could hit more specific subsets of brain cells than those devices can. Applications of optogenetic tools in nonneuronal cells are on the rise.

Research on Fabrication of Silicon Lens for Optical Communication by Photolithography Process (포토리소그래피를 통한 광통신용 실리콘 렌즈 제작 및 특성 연구)

  • Park, Junseong;Lee, Daejang;Rho, Hokyun;Kim, Sunggeun;Heo, Jaeyeong;Ryu, Sangwan;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.35-39
    • /
    • 2018
  • In order to improve the coupling efficiency, a collimator lens that collects the light emitted from the laser diode at a wide angle to the core of the optical fiber is essential. Glass mold method using a mold is widely used as a collimator lens currently used. Although this method is inexpensive to produce, it is difficult to form precisely and quality problems such as spherical aberration. In this study, the precision of surface processing was improved by replacing the existing glass mold method with the semiconductor process, and the material of the lens was changed to silicon suitable for the semiconductor process. The semiconductor process consists of a photolithography process using PR and a dry etching process using plasma. The optical coupling efficiency was measured using an ultra-precision alignment system for the evaluation of the optical characteristics of the silicon lens. As a result, the optical coupling efficiency was 50% when the lens diameter was $220{\mu}m$, and the optical coupling property was 5% or less with respect to the maximum optical coupling efficiency in the lens diameter range of $210-240{\mu}m$.

Thin dielectric diaphragm pressure sensor with optical readout (광학적 신호감지의 유전박막 다이아프레임을 이용하는 압력센서)

  • Kim, Myung-Gyoo;Ryu, Yang-Woog;Park, Dong-Soo;Kim, Jin-Sup;Lee, Jung-Hee;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.1-7
    • /
    • 1996
  • Optical intensity-type pressure sensor was fabricated by coupling optical fiber with a micromachined thin dielectric diaphragm, which consists of a 300 nm thick $SiO_{2}$ layer sandwiched between 150 nm thick top and bottom $Si_{3}N_{4}$ layers. At the wavelength of the sensor light source near $1.3\;{\mu}m$, the optical transmittance of the diaphragm was about 50 %, but it was decreased to a few percents by depositing $1,000\;{\AA}$ thick gold(Au) layer on the diaphragm, which is sufficient enough to be used as a light reflection layer of the sensor. From the optical output power-pressure characteristics of the sensors, it was found that the output power linearly decreased with increasing applied pressure from 0 to 77 torr regardless of the diaphragm size. The respective sensitivities were 0.52, 0.65, and 0.77 nW/torr for the diaphragm sizes of $3{\times}3$, $4{\times}4$, and $5{\times}5\;mm^{2}$, indicating that the sensitivity increases as diaphragm size decreases.

  • PDF