• Title/Summary/Keyword: 광섬유 광학

Search Result 867, Processing Time 0.024 seconds

Diffraction by a sub-wavelength-sized aperture in a metal plane (파장보다 작은 금속 구멍을 통한 회절)

  • ;;Arturo Chavez-Pirson
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.164-165
    • /
    • 2000
  • 구멍에 의한 빛의 회절은 광학의 기본적인 문제로서, 최근 근접장 광학(Near-Field Optics)의 발전과 더불어서 파장보다 작은 구멍에서 일어나는 빛의 회절에 대한 관심이 고조되고 있다.$^{(1)(2)(3)}$ 본 연구에서는 그동안 주로 이론적으로 다루어지고 있던 파장보다 작은 금속 구멍을 통한 빛의 회절에 대해 실험결과들을 보고한다. 회절된 빛의 먼장(Far-field)과, 근접장(Near-field)을 모두 측정하기 위해서 고체각 주사기(Solid angle scanner)와 근접장 주사 광학 현미경(Near-field Scanning Optical Microscopy)이 사용되었다. 고체각 주사기(Solid angle scanner)를 사용하여 반구면 위에서의 빛의 이차원 세기 분포가 다양한 편광 상태에 따라서 측정되었고$^{(4)}$ 근접장 탐침(NSOM probe)으로 작은 금속 구멍주변을 주사함으로서 근접장이 측정되었다. 작은 구멍은 최근에 개발된 고출력 근접장 광섬유 탐침(High-power near-field fiber probe)구조를 이용하여 제작되었다.$^{(5)}$

  • PDF

Analysis of taper-foremd optical coupler for the optical communication (광통신용 taper형 광 결합기의 해석)

  • 김선엽;노신래;손동희;강영진
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.98-106
    • /
    • 1998
  • Efficient power transmission from a single mode fiber to a thin-film waveguide devices is one of the most fundamental and inevitable subject that should be first solved toward the realization of the integrated optic system. In this paper, fiber-waveguide coupling structure is considered and the large mismatch of field profiles at the fiber-waveguide interface is well avoided by using to the coupling guide which is intentionally developed on the top of the thin-film guuide. From the simulation, the taper-type structure are shown to be easier realizeable than the uniform one, since optical coupling between the guides in the latter has a stronger tolerance to the deviation of waveguide parameters.

  • PDF

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

All-fiber 1.5-kW-class Single-mode Yb-doped Polarization-maintaining Fiber Laser with 10 GHz Linewidth (전광섬유 MOPA 시스템 기반 10 GHz 선폭을 갖는 1.5 kW 단일모드 이터븀 첨가 편광유지 광섬유 레이저)

  • Jeong, Seongmook;Kim, Kihyuck;Kim, Taekyun;Lee, Sunghun;Yang, Hwanseok;Lee, Junsu;Lee, Kwang Hyun;Lee, Jung Hwan;Jo, Min-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.223-230
    • /
    • 2020
  • In this paper, we have studied the characteristics of stimulated Brillouin scattering (SBS) and mode instability (MI) in a ytterbium-doped polarization-maintaining fiber laser with master oscillator power amplifier configuration. We measured the laser output power and back-reflection spectrum for a variety of ytterbium-doped fibers and seed lights, to investigate the power-scaling limits of fiber lasers. By optimizing the laser structure, we demonstrated an all-fiber high-power polarization-maintaining fiber laser with near-diffraction-limited beam quality. The output power of 1.5 kW was achieved with a linewidth of 10 GHz, generated by pseudo-random binary sequence (PRBS) phase modulation. The beam quality M2 was about 1.15 at the maximum output power. The polarization extinction ratio (PER) was greater than 17 dB.

Optical True Time-Delay for Planar Phased Array Antennas Composed of a FBG Prism and a Fiber Delay Lines Matrix (FBG 프리즘과 광섬유 지연선로 행렬을 이용한 평면 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 2006
  • In this paper, we proposed an optical true time-delay (TTD) for planar phased array antennas (PAAs), which is composed of a wavelength-dependent optical true time delay (WDOTTD) followed by a wavelength-independent optical true time delay (WIOTTD). The WDOTTD is a fiber Bragg gratings (FBGs) Prism and the WDOTTD is a fiber delay-lines matrix of which each component consists of a certain length of fiber connected to cross-ports of a 2${\times}$2 MEMS switch. A 10-GHz 2-bit${\times}$4-bit two-dimensional optical TTD has been fabricated by cascading a WDOTTD with a maximum time delay of 810 ps to a WIOTTD of $\pm$50 ps. Time delay and insertion loss for each radiation angle have been measured. Time delay error for the WIOTTD has been measured to be less than $\pm$1 ps. We have also designed a two-dimensional 10-GHz PAA composed of 8${\times}$8 microstrip patch antenna elements driven by the proposed TTD. The radiation patterns of this PAA have been obtained by simulation and analyzed.

Polarization-Maintaining Photonic-Crystal-Fiber-based Polarimetric Strain Sensor with a Short Sensing Head (짧은 센서부를 가진 편광유지 광자결정 광섬유 기반 편광 간섭형 스트레인 센서)

  • Noh, Tae Kyu;Lee, Yong Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.3
    • /
    • pp.131-136
    • /
    • 2014
  • In this paper we have implemented a temperature-insensitive polarimetric fiber strain sensor based on a Sagnac birefringence interferometer composed of a short polarization-maintaining photonic crystal fiber (PM-PCF), a 3-dB fiber coupler, and polarization controllers. The PM-PCF used as a sensor head was 2 cm long, which is the shortest length for a sensing element compared to other polarimetric fiber strain sensors using a PM-PCF. The proposed sensor showed a strain sensitivity of ${\sim}0.87pm/{\mu}{\varepsilon}$ with a strain measurement range from 0 to $8m{\varepsilon}$. The temperature sensitivity was also investigated and measured as approximately $-12pm/^{\circ}C$, when ambient temperature changed from 30 to $100^{\circ}C$. This temperature sensitivity is about 82 times smaller than that of conventional polarization-maintaining fiber (approximately $-990pm/^{\circ}C$). In particular, from a practical perspective we have experimentally and theoretically confirmed that the wavelength selected for the indicator dip location does not make a significant difference in the strain sensitivity.

Fiber-optic Mach-Zehnder Interferometer for the Detection of Small AC Magnetic Field (미소 교류 자기장 측정을 위한 Mach-Zehnder 광섬유 간섭계 자기센서 특성분석)

  • 김대연;안준태;공홍진;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.139-148
    • /
    • 1991
  • A fiber-optic magnetic sensor system for the detection of small ac magnetic field(200Hz-2 kHz) was constructed. Magnetic field sensing part was fabricated by bonding a section of optical fiber to amorphous metallic glass(2605SC) having large magnetostriction effect. And with the directional coupler, all fiber type Mach-Zehnder interferometer was constructed to measure the variation of the external magnetic field by translating it into the optical phase shift in the interferometer. The signal fading problem of the interferometer, which is due to random phase drifts originated from the environment, i.e., temperature fluctuation, vibrations, etc., was elliminated by feedback phase compensation. This allows the sensitivity to be maintained at the maximum by keeping the interferometer in quadrature phase condition. The frequency response of metallic glass was found to be nearly flat in the range of 90 Hz-2 kHz and dc bias field for the maximum ac response was 3.5 Oe. The interferometer output showed good linearity over the range $\pm$0.5 Oe. For 1 kHz ac magnetic field the scale factor S and the minimum detectable magnetic field were measured to be 8.0 rad/Oe and $3X10^{-6} Oe/\sqrt{Hz}$at 1 Hz detection bandwidth respectively.

  • PDF

Acoustic Sensitivity Analysis of a Ring-type Probe Based on a Fiber-optic Sagnac Interferometric Sensor (광섬유 사냑 간섭형 센서에 기반한 링형 탐촉자의 수중 음향 민감도 해석)

  • Lee, Yeon-Woo;Kwon, Hyu-Sang;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • To measure underwater acoustics using a fiber-optic Sagnac interferometric sensor, the sensitivities of ring-type probes are investigated by theoretical and experimental studies. A ring-type probe was fabricated by packaging a single-mode fiber wound around an acrylate cylinder of diameter 5 cm with epoxy bond. The probes were prepared as A-type, which was packaged with 46.84 m of sensing optical fiber, and B-type, which was packaged with 112.22 m of sensing fiber. The underwater acoustic test was performed at frequencies of 50, 70, and 90 kHz, and over a range of acoustic pressure of 20-100 Pa, to study the sensitivity. A commercial acoustic generator was located 1 m from the acoustic sensor, such as the ring-type probe or a commercial acoustic sensor. From the experimental test, the acoustic sensitivity of the ring-type probe had different values due to acoustic frequencies, unlike the theoretical prediction. Therefore, the experimental sensitivities were averaged for comparison to the theoretical values. These averaged sensitivities are 25.48 × 10-5 rad/Pa for the A-type probe and 60.79 × 10-5 rad/Pa for the B-type probe. The correction coefficient of Young's modulus c was determined to be 0.35.

Fabrication of passive-aligned optical sub-assembly for optical transceiver using silicon optical bench (실리콘 광학벤치를 사용한 수동정렬형 광송수신기용 광부모듈의 제작)

  • Lee, Sang-Hwan;Joo, Gwan-Chong;Hwang, nam;moon, Jong-Tae;Song, Min-Kyu;Pyun, Kwang-Eui;Lee, Yong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.510-515
    • /
    • 1997
  • Packaging takes an extremely important element of optical module cost due primarily to the added complication of alignment between semiconductor devices and optical fiber, and many efforts have been devoted on reducing the cost by eliminating the complicated optical alignment procedures in passive manner. In this study, we fabricated silicon optical benches on which the optical alignments are accomplished passively. To improve the positioning accuracy of a flip-chip bonded LD, we adopted fiducial marks and solder dams which are self-aligned with V-groove etch patterns, and a stand-off to control the height and to improve the heat dissipation of LD. Optical sub-assemblies exhibited an average efficiency of -11.75$\pm$1.75 dB(1$\sigma$) from the LD-to-single mode fiber coupling and an average sensitivity of -35.0$\pm$1.5 dBm from the fiber and photodetector coupling.

  • PDF

Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide (측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기)

  • 김광택;유호종;김성국;이소영;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 1999
  • In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF