• Title/Summary/Keyword: 광물분석

Search Result 1,574, Processing Time 0.025 seconds

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.

Quantitative X-ray Diffraction Analysis of Synthetic Mineral Mixtures Including Amorphous Silica using the PONKCS Method (PONKCS 방법을 이용한 비정질 실리카 함유 인공광물혼합시료의 정량 X-선회절 분석)

  • Chon, Chul-Min;Lee, Sujeong;Lee, Sung Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • X-ray powder diffraction is one of the most powerful techniques for qualitative and quantitative analysis of crystalline compounds. Thus, there exist a number of different methods for quantifying mineral mixtures using X-ray diffraction pattern. We present here the use of Rietveld and PONKCS (partial or no known crystal structure) methods for quantification of amorphous and crystallized mineral phases in synthetic mixtures of standard minerals (amorphous silica, quartz, mullite and corundum). Pawley phase model of amorphous silica was successfully built from the pattern of 100 wt% amorphous silica and internal standard-spiked samples by PONKCS approach. The average of absolute bias for quantities of amorphous silica was 1.85 wt%. The larger bias observed for lower quantities of amorphous silica is probably explained by low intensities of diffraction pattern. Averages of absolute bias for minerals were 0.53 wt% for quartz, 0.87 wt% for mullite and 0.57 wt% for corundum, respectively. The PONKCS approach achieved improved quantitative results compared with classical Rietveld method by using an internal standard.

국내 광업현황과 당면과제

  • 기태석
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.31-52
    • /
    • 2002
  • 국내광업은 '90년대 이후 석탄산업합리화조치와 국제금속광물시장 가격안정화로 그동안 광업을 주도한 석탄산업과 금속광업은 급격히 위축되는 한편, 산업원료의 수요증가 추세에 힘입어 비금속광물 개발은 비교적 활발한 상태이다. 이와 같이 국내 광업의 주된 영역이 석탄광과 금속광에서 비금속광 중심으로 개편되고 있으나, 현재 가행중인 비금속광은 고품위광체 확보 미흡, 고부가가치 기술낙후 등으로 고가의 주요 산업원료는 주로 수입에 의존하고 있는 실정이다. 따라서 국내광업으로서는 비금속광 중심의 단순한 원광석 생산$\cdot$판매체계를 고부가 산업으로 전환시키기 위한 전략적인 방안이 필요한 시기이다. 본 발표문은 이러한 국내광업의 향후 발전방향을 모색하기 위하여 국내 광업이 국가 경제에서 차지하는 영역을 중심으로 $\ulcorner$광업동향$\lrcorner$ $\ulcorner$광업의 국내$\cdot$외 환경분석$\lrcorner$ $\ulcorner$광업의 경제활동 현황$\lrcorner$ $\ulcorner$광업의 경제적 위치와 역할$\lrcorner$로 분류하여 자료분석을 실시하였으며, 분석한 자료를 토대로 국내광업의 중요성과 당면과제를 도출하고 이에 따른 광업의 새로운 역할을 제시하고자 하였다. 국내광업은 각종 지표에서 나타난 바와 같이 여러 가지 구조적인 문제점으로 인해 개발에 어려움을 겪고 있지만 각종 산업원료의 중간재 공급원으로서의 전통적인 역할을 충실히 담당하고 있는 것으로 분석되었다. 그러나 과학기술의 급격한 발달, 소비패턴의 변화, 생활환경과 삶의 질을 중시하는 새로운 가치관의 확산 등으로 광업의 역할도 새로운 변화의 전기를 맞이하고 있음을 볼 수 있다. 국내광업이 21C 급변하는 산업환경에 적응하여 생존하기 위해서는 각종 첨단산업에서 요구하는 소량 다품종의 원료광물을 적기에 공급 할 수 있는 전문화된 기술력을 하루속히 확보해야 하며, 이를 위해 고품위의 원료광물 확보를 위한 탐사 및 개발을 적극 추진하고 가공기술의 선진화를 위해 선진국과의 기술제휴 등 자원산업 글로벌화 정책이 절실히 요구되고 있음을 알 수 있다. 또한 삶의 질을 향상시키려는 현대인의 가치관에 부합하기 위해서는 각종 소비제품의 원료를 제공하는 광업의 본래 목적 이외에도 자연환경 훼손을 최소화하며 개발 할 수밖에 없는 구조적인 어려움에 직면할 수밖에 없다. 이처럼 국내광업이 안고 있는 여러 가지 난제들을 극복하기 위해서는 업계와 정부가 합심하여 국내광업 육성의 중요성을 재인식하고 새로운 마음가짐으로 관련 정책을 수립 일관성 있게 추진해 나가야 할 것으로 보인다.

  • PDF

Characterization of Clastic and Organic Sediments Near Dokdo, Korea (독도 인근 해저퇴적물과 유기 퇴적물 분포 특성)

  • Jun, Chang Pyo;Kim, Chang Hwan;Lee, Seong-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.65-80
    • /
    • 2013
  • Sediment transport mechanism and distribution of organic sediments are elucidated by the study of particle size, mineralogy, organic matters and microfossils of the surface samples collected from seafloor adjacent Dokdo island. Shallow marine sediments are dominated by coarse- grained sediments including gravel and sand, and their sedimentation has mainly been controlled by traction. While the samples collected from oceanic zone are characterized by high contents of fine- grained sediments such as silt and mud in bulk sediments, and the changes of mineral compositions including clay minerals and feldspar, and the fine sediments have been deposited mainly by suspension. The change of organic sedimentary communities is detected between neritic and oceanic zone. Although marine organic matter is predominant in neritic zone, terrestrial organic matter is monopolized according to increasing water depth. This trend is associated with grain size of sediments. The results also suggest that high pollen concentrations in whole organic matters may played an important role in excessive organic carbon in sediment.

Damage of Minerals in the Preparation of Thin Slice Using Focused Ion Beam for Transmission Electron Microscopy (투과전자현미경분석용 박편 제작 시 집속이온빔에 의한 광물 손상)

  • Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.293-297
    • /
    • 2015
  • Focused ion beam (FIB) technique is widely used in the precise preparation of thin slices for the transmission electron microscopic (TEM) observation of target area of the minerals and geological materials. However, structural damages and artifacts by the Ga ion beam as well as electron beam damage are major difficulties in the TEM analyses. TEM analyses of the mineral samples showed the amorphization of quartz and feldspar, curtain effect, and Ga contamination, particularly near the grain edges and relatively thin regions. Although the ion beam damage could be much reduced by the improved procedures including the adjustment of the acceleration voltage and current, the ion beam damage and contamination are likely inevitable, thus requiring careful interpretation of the micro-structural and micro-chemical features observed by TEM analyses.

Utilization of Fly Ash as a Source of Mineral Fertilizers -I. Mineralogical Characteristics (Fly ash 비료화(肥料化) 연구(硏究) -I. Fly ash의 광물학적(鑛物學的) 특성(特性))

  • Shin, Jae-Sung;Seong, Ki-Seog;Kim, Maun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.309-314
    • /
    • 1987
  • This study was conducted to examine mineralogical aspects on anthractite and bituminous coal-fired power-plant ashes as a source of mineral fertilizer. Fly ashes contain dominant amounts of silica and alumina and considerable quantitites of potassium and boron. However, potassium and silica present in unavailable forms for plant growth. X-ray, DTA, and IR analysis of ash particles indicated the formation of new mineral, mullite with shape of which were spherical in the surface morphologies of SEM. Detailed SEM investigation showed the presence of imbedded blocky shape silicate material.

  • PDF

Clay Mineral Composition of the Soils Derived from Residuum and Colluvium (잔적 및 붕적모재 토양의 점토광물 특성구명)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Jung, Sug-Jae;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Lee, Ju-Young;Pyun, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.245-252
    • /
    • 2006
  • This experiment was conducted to investigate the distribution and compositions of clay mineral and to replenish the soil classification system in Korea. Soil layer samples were collected from 26 residuum and colluvium soil series out of 390 soil series in Korea, and then analyzed for soil physical and chemical characteristics, mineral and chemical compositions of clay in B horizon soils. Major clay minerals of residuum and colluvium were illite and chlorite in soils originated from the sedimentary rock such as limestone, shale, sandstone and conglomerate; quartz and kaolin in soils originated from rhyolite, neogene deposits, porphyry and tuff; and kaolin and quartz in the soils originated from granite, granite gneiss and anorthosite. Clay minerals in Korean soils were divided into 4 groups: mixed mineral group(MIX) mainly contained with illite, kaolin and vemiculite; kaolin group(KA) with kaolin and illite; chlorite group(CH) with chlorite and illite; and smectite group(SM) with kaolin, illite and smectite. The most predominant clay mineral group was kaolin group(KA) with kaolin and illite; an mixed mineral group(MIX) with illite, kaolin and vemiculite. Cation exchange capacity (CEC) of clay was low in the soils mainly composed with MIX and KA groups and silica-alumina molar ratio of clay was high in the soils composed with SM group

Clay Activity and Physico-chemical Properties of Korean Soils with Different Clay Minerals (점토광물 조성이 상이한 토양의 점토활성도와 이화학적 특성)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Hyun, Byung-Keun;Moon, Yong-Hee;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.837-843
    • /
    • 2010
  • This research investigated classification of clay activity degree by different clay mineral components. Based on compositions of different clay and oxide minerals within 390 soil series in Korea, 7 soils were selected to analyze for CEC and specific surface area of clay minerals. As a result, soils were mainly composed with Chlorite originated from sandstone, Smectite originated from Andesite porphyry and combination of Allophane and Ferrihydrite originated from volcanic ash, if the ratio of CEC value to clay content (degree of clay activity) was greater than 0.7. If the degree of clay activity was ranged between 0.3 and 0.7, soils were composed mainly with Kaolin originated from anorthite. Soils with this ratio also was composted with combinations of Kaolin, Illite and Vermiculite originated with river deposits. When the degree of the activity was less than 0.3, soils were commonly red-yellowish color and composed with two different minerals. One type of composition was Kaolin originated from granite and granite gneiss and the soils contained Geothite and Hematite. The other type was composited mainly with Illite and Vermiculite minerals originated from granite. These soils contained Gibbsite, Geothite and Hematite. The degree of clay activity was highly related with CEC and specific surface area. The greater degree of the activity displayed greater values of clay CEC and specific surface area. It is not easy to measure actual quantity and compositions of clay minerals, while the degree of clay activity can be measured from routine soil analyses. As a conclusion, the degree of clay activity may be not just a simple but also powerful tool to estimate physical-chemical properties of soils and to evaluate the soil classification in Korean soils.

Distribution of Clay Minerals in Soils on the Northern Drainage Basin of the Nakdong River (낙동강 북부 배수유역의 토양 점토광물 분포)

  • Lee, Bong-Ho;Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 2008
  • Semiquantitative mineralogical analysis of clays in soils was performed to understand the distribution of clay minerals in relation to bedrock lithology on the northern basin of the Nakdong River. The soils developed on the granitic bedrocks have high contents of kaolinite and smectite. mite was the major clay mineral in the soils from sedimentary bedrocks, with minor kaolinite, smectite, and intergrade (interstratified chlorite-smectite or hydroxy-interlayed vermiculite) clay minerals. Illite and kaolinite contents of the soils from metamorphic and volcanic bedrocks fall between those of the soils from the granitic bedrocks and those of the soils from the sedimentary bedrocks. The clay mineralogy of the soils depends on the compositions of bedrock minerals and their susceptibility to chemical weathering. The weathering of plagioclase resulted in the high kaolinite content of the soils derived from granitic bedrocks, while the soils derived from sedimentary bedrocks are abundant in residual illite.

Standardization Studies for the Oriental Mineral Medicine (광물성 약재(광물약)의 표준화에 관한 연구)

  • Kim, Seon-Ok;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • Oriental mineral medicines are single or mixture of more than one mineral species or rock/fossil which are used to treat disease. Mineral medicines remove harmful or useless substances to decrease toxicity and secondary effects, and cause the manufacture of medical compounds with increased efficacy. The extraction test is an accepted in vitro system to predict the bioaccessibility of major and minor elements from mineral medicine. It incorporates gastrointerstinal tract parameters representative of a human body that including stomach and small intestinal pH which are the same as digestion condition. The bioaccessibility of a mineral medicine is the fraction that is soluble in the gastrointestinal environment and is available for absorption. Reaction path modeling in the human body can predict digestion with gastric fluid as well as absorption in the small intestine, existence in body fluids and reaction progress of the exhaust process according to pH conditions in body. Also reaction path modeling can predict bioavailability, which is equal to existence rate in the body and the form and amount of a medicine in the body after intake. The study results from predicating the existence form mineral medicines in the body, and proving the effective ingredient using bioaccessibitily and human risk assessment, suggest these that should be necessary data for new medicine development.