• Title/Summary/Keyword: 광대역 코드분할 다중화 시스템

Search Result 4, Processing Time 0.021 seconds

Performance Analysis of a Receiver for WCDMA Systems (광대역 코드분할 다중화 시스템 수신기의 성능 분석)

  • 박중후
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.87-93
    • /
    • 2001
  • As a new type of a linear decorrelating receiver, the Pseudo-Decorrelator was presented for asynchronous code division multiple access systems by the author. In this paper, the concept of the Pseudo-Decorrelator is extended to derive a receiver for WCDMA uplink systems over an additive white Gaussian noise channel. Starting with the analysis of the multiple access components of the decision statistics, a non-square cross-correlation matrix for each bit is obtained. This cross-correlation matrix is then inverted, and the inverted matrix is applied to the decision statistics obtained from a conventional receiver. In this receiver, the detection process can be started after the first three consecutive bits are received. Simulation results are presented for K-user systems over an additive white Gaussian noise channel under the circumstances in which synchronization errors, including time delay errors and carrier phase errors exist. It is shown that the proposed receiver performs better than a conventional receiver and parallel interference canceller.

  • PDF

The Performance Analyparkof Bandlimited WCDMA Systems (대역이 제한된 광대역 코드분할 다중화 시스템의 성능 분석)

  • Kim, Young-Sam;Park, Joong-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.193-199
    • /
    • 2003
  • In this paper, the performance of uplink WCDMA systems was analyzed using the SGA (Standard Gaussian Approximation) method and the SIGA(Simplified Improved Gaussian Approximation) method adopted for the performance analysis in conventional DS-CDMA systems. The performance of bandlimited WCDMA systems was analyzed using the SGA and SIGA method, and computer simulations were performed in AWGN environments having multiple access interference. It was shown that the performance analysis of uplink bandlimited WCDMA systems using the SIGa method may be very efficient through various computer simulations with verying spreading factors, roll-off factors, and signal-to-noise ratios.

The Performance Analysis of the Pseudo-decorrelator for WCDMA systems (WCDMA 시스템을 위한 유사 역상관기의 성능 분석)

  • 박중후;이용업
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.120-127
    • /
    • 2002
  • As a new type of a linear decorrelating receiver, the Pseudo-Decorrelator was presented for asynchronous code division multiple access systems by the author. In this paper, the concept of the Pseudo-Decorrelator is extended to derive a multiuser receiver for WCDMA uplink systems over a Rayleigh fading multipath channel. Starting with the analysis of the multiple access components of the decision statistics, a non-square cross-correlation matrix for each bit is obtained. This cross-correlation matrix is then inverted, and the inverted matrix is applied to the decision statistics obtained from a conventional receiver. This receiver is near-far resistant and outperforms conventional receivers even for the cases in which synchronization errors, such as time delay errors and phase errors exist.

Real-time Implementation of the AMR Speech Coder Using $OakDSPCore^{\circledR}$ ($OakDSPCore^{\circledR}$를 이용한 적응형 다중 비트 (AMR) 음성 부호화기의 실시간 구현)

  • 이남일;손창용;이동원;강상원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.34-39
    • /
    • 2001
  • An adaptive multi-rate (AMR) speech coder was adopted as a standard of W-CDMA by 3GPP and ETSI. The AMR coder is based on the CELP algorithm operating at rates ranging from 12.2 kbps down to 4.75 kbps, and it is a source controlled codec according to the channel error conditions and the traffic loading. In this paper, we implement the DSP S/W of the AMR coder using OakDSPCore. The implementation is based on the CSD17C00A chip developed by C&S Technology, and it is tested using test vectors, for the AMR speech codec, provided by ETSI for the bit exact implementation. The DSP B/W requires 20.6 MIPS for the encoder and 2.7 MIPS for the decoder. Memories required by the Am coder were 21.97 kwords, 6.64 kwords and 15.1 kwords for code, data sections and data ROM, respectively. Also, actual sound input/output test using microphone and speaker demonstrates its proper real-time operation without distortions or delays.

  • PDF