• Title/Summary/Keyword: 광대역 유도분극 탐사

Search Result 12, Processing Time 0.016 seconds

Spectral Induced Polarization Response Charaterization of Pb-Zn Ore Bodies at the Gagok mine (가곡광산 연-아연 광체의 광대역유도분극 반응 특성)

  • Shin, Seungwook;Park, Samgyu;Shin, Dongbok
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.247-252
    • /
    • 2014
  • Gagok Mine, which is skarn deposits, includes sulfide minerals such as sphalerite, galena, chalcopyrite, and pyrrhotite. To explore these minerals, spectral induced polarization (SIP) is relatively effective compared to other geophysical exploration methods because there is a strong IP effect caused by electrode polarization. In the SIP, the chargeability related to sulfide mineral contents and the time constant related to the grain size of the minerals are obtained. For this reason, we aim to compare difference in the mineralized characteristics between two orebodies in the Gagok Mine by using the chargeability and the time constant. For this study, we sampled ores from the south of Wolgok orebody and the north of Sungok orebody. In order to recognize the mineralization characteristics, the metal content of the samples was measured by a potable XRF and the SIP data of the samples were acquired by using a laboratory SIP measurement system. As a result, the metals in the samples such as Pb, Zn, Cu, and Fe were detected by the portable XRF measurement. In particular, the Fe and Zn contents were far higher than the other metals. The Fe and the Zn were caused by the sphalerite and the pyrrhotite through microscopy. The Wolgok orebody had higher sulfide mineral contents than the Sungok orebody and the result corresponded with the chargeability result. However, we considered that the Sungok orebody had a larger sulfide mineral grain size than the Wolgok orebody because the time constant of the Sungok orebody was larger.

Techniques to Estimate Permeability Based on Spectral Induced Polarization Survey (광대역유도분극 탐사에 기초한 유체투과도 예측기법들)

  • Kim, Bitnarae;Cho, AHyun;Weller, Andreas;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.55-69
    • /
    • 2020
  • Permeability-analyzing methods commonly involve small-scale drilling, such as pumping or slug test, but it is difficult to identify overall distribution of permeability of the entire target sites due to high cost and time requirement. Spectral induced polarization (SIP) method is known to be capable of providing distributions of both the porosity and the pore size, the two major parameters determining permeability of the porous medium. The relationship between SIP variables and permeability has been studied to identify the hydrological characteristics of target sites. Kozeny-Carman formula has been improved through many experiments to better predict fluid permeability with electrical properties. In this work, the permeability prediction techniques based on SIP data were presented in accordance with the hydrogeological and electrical characteristics of a porous medium. Following the summary of the techniques, various models and related laboratory experiments were analyzed and examined. In addition, the field applicability of the prediction model was evaluated by field case analysis.