• Title/Summary/Keyword: 관 환경

Search Result 2,590, Processing Time 0.037 seconds

Reproducibility of Reaeration in Sewer using Batch Reactor Test (실험반응조를 이용한 하수관에서의 재포기현상 재현 가능성에 관한 연구)

  • Hwang, Hwankook;Min, Sangyun;Cho, Jinkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.45-50
    • /
    • 2014
  • The microorganism decomposition experiment of sewage in the underground sewer has the limit of experiment condition and time. The way to reproduce the microorganism decomposition in the underground sewer was studied using batch reactor setting up the DO as a limiting condition. The DO concentration in the sewer is controlled by reaeration. It is possible to obtain correlation between flow condition and reaeration coefficient through the reproduction of reaeration phenomenon by controlling the flow condition in the sewer using this phenomenon. And it is possible to set the flow condition and agitation intensity (velocity gradient) that has the same reaeration coefficient using the correlation between the reaeration coefficient with the flow condition and reaeration coefficient with the agitation intensity. The circumstances in the sewer system was reproduced using batch reactor setting up the DO as a limiting condition from these results.

Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe (모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교)

  • Park, Se-Keun;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • This study investigated the characteristics of the biofilm removal by free chlorine or monochloramine. The simulated drinking water distribution pipes on which biofilms had been formed were supplied with tap water containing 0.5, 1.0, 2.0 mg/L of free chlorine or monochloramine residuals. The biofilm removal was characterized by measurement of attached HPC and biomass on pipe surfaces. Chlorine was more effective in both inactivation of attached viable heterotrophic bacteria and removal of biofilm biomass compared to monochloramine. Biofilm matrix was not much eliminated from the surfaces by monochloramine disinfection. Free chlorine residual of 2.0 mg/L was found to be effective in biomass removal. However, biofilm level as low as $10CFU/cm^2$ of attached HPC and $5{\mu}g/cm^2$ of biomass still remained on the surfaces at 2.0 mg/L of chlorine residual. The measurement of biomass appeared to be a useful means in evaluating the characteristics of biofilm removal.