• Title/Summary/Keyword: 관 파손

Search Result 191, Processing Time 0.025 seconds

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

Experimental Evaluation of the Effect of Fine Contents on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대해 세립분 함량이 미치는 영향의 실험적 평가)

  • Kwak, Tae-Young;Lee, Seung-Hwan;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.93-105
    • /
    • 2021
  • In this study, we evaluated the effect of soil fine contents on the formation of underground cavities and ground cave-ins induced by damaged sewer pipes. Simulating the domestic rainfall conditions and ground conditions, model tests were performed under three different fine particle contents conditions (7.5%, 15%, and 25%). By repeating the groundwater supply and drainage twice, ground settlement and the amount of discharged soil were obtained. Also, digital images were taken at regular time intervals during the model tests, and internal displacement and deformation were measured using PIV technique. As the cycles were repeated, the soil with high fine content showed greater resistance to the formation of underground cavities. The ground cave-ins, identified by the collapse of the surface, occurred only when the fine particle content was 15%. It is presumed to be due to the suffusion phenomenon; further study was needed to investigate the effect of fine particle contents on the suffusion phenomenon and associated changes of soil strength.

A fundamental study on the minimize wear of slurry shield TBM sludge bend pipe (이수식 쉴드 TBM 배니곡관 마모 최소화를 위한 기초 연구)

  • Soo-Jin Lee;Hyeon-Do Kim;Yong-Woo Kim;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.243-254
    • /
    • 2024
  • Currently, due to industrial development in domestic regions, buildings are saturated not only in major city centers but also in surrounding urban areas. Accordingly, people's attention has focused on underground spaces, and tunnels are being widely used, especially in urban development. Research on tunnels and tunnel excavation methods is actively underway. However, there is a lack of research on the wear and tear problems of sludge discharge pipes when using a slurry shield TBM. Therefore, in this paper, the L-shaped bend pipe used in the existing sludge discharge pipe was transformed into a T-shaped bend pipe to move sludge. As a result, it was confirmed that compared to the L-shaped bend pipe, the impact of the T-shaped bend pipe on the bend pipe when discharging sludge was reduced. Based on these results, it is expected that wear of the sludge discharge pipe can be minimized by using a T-shaped bend pipe when using slurry shield TBM equipment. This is expected to ultimately lead to economic benefits, such as reducing costs due to replacement of curved pipes or additional welding during tunnel construction.

A study of geothermal heat dump for solar collectors overheat protection (태양열 집열관 과열방지를 위한 지중열교환기 연구)

  • Hwang, Hyun-Chang;Chi, Ri-Guang;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.616-622
    • /
    • 2016
  • The heating load using solar hot water is lower in summer than in the other seasons. This decreased heating load leads to the overheating solar collectors and related components. To prevent overheating of the solar collectors, air cooling and shading shields were used. On the other hand, it requires additional mechanical components, and reduces the system reliability. The geothermal heat dump system to release the high temperature heat (over $150^{\circ}C$) transferred from the heat pipe solar collectors was investigated in the present study. Research on the heat dump to cool the solar collector is rare. Therefore, the present study was carried out to collect possible data of a geothermal heat dump to cool the solar collector. A helical type geothermal heat exchanger was buried at a 1.2m depth. Experimentally and numerically, the geothermal heat dump was investigated in terms of the effects of parameters, such as the quantity of solar radiation, aperture area of the collector and the mass flow rate. A pipe length of 50m on the geothermal heat exchanger was suitable with a 0.33 kg/s flow rate. The water reservoir was a possible co-operation solution linked to the geothermal heat exchanger.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

A Study on the Failure Characteristics about Metropolitan Pipelines in Korea (국내(國內) 대도시(大都市) 수도관(水道管)의 파손특성(破損特性)에 관한 연구(硏究))

  • Lee, Hyun-Dong;An, Youn-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.96-111
    • /
    • 1996
  • The failure of water pipelines is progressed by several compound factors and the collection and analysis of data about pipeline failure are inevitable for effective pipeline rehabilitation. Data analysis of pipeline failure was already performed in USA and Europe. Based on such phenomena, failure characteristics about metropolitan pipelines in Korea were analyzed: The conclusions of this study are as followings. 1. The failure cause of pipelines can be classified into natural cause and artificial cause. Artificial cause is 32% of total causes, so artificial failure as several constructions happens frequently in Korea. Although the failure by old pipe is greatest of any other causes m classtfied cause, failure cause is not classified in detail now. 2. The damaged part of pipelines is affected by cities, distribution system inventory, bedding conditions, and so on. In this study, the failure of pipeline body(67%) is greater than the failure of pipeline joint(33%) in natural failure. 3. In regard to pipe materials, failure rate of DCIP(0.8456), PEP(0.7288), and GSP(0.6643) is greater than that of CIP(0.3985) and CWSP(0.2348). 4. Usually, faIlure rate is increased in proportion to diameter of pipeline. In this study, CIP, DCIP, and CWSP have clear trends. But the trends of PEP is reverse, the case of GSP, HP is obscure due to data shortage. 5. There are no direct relationships between burial age and failure rate of pipelines. 6. Annual breaks and winter(Nov.~Feb.) breaks of pipelines are investigated. As a result, WInter breaks to annual breaks of CIP is 51.3%(Seoul), 51.1%(Taegu),38.7%(Pusan). This phenomena have direct correlation with average winter temp. of cities.

  • PDF

Performance Evaluation Systems in Water Distribution Network (상수관망의 성능평가를 위한 진단체계 구축)

  • Kim, Ju-Hwan;Kim, Jung-Hyun;Lee, Doo-Jin;Woo, Hyung-Min;Bae, Cheol-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.864-868
    • /
    • 2008
  • Water transmission and distribution systems play a important role to deliver safe and clean water and are responsible for the most direct impacts of water utilities to customers. Although the performance of WDS(Water Distribution Systems) should be evaluated by a certain standards, interests has not been in WDS and developed due to invisible, hard-working and insufficient information in the evaluation process in Korea till now. The investigations and researches were carried out to develop software to assist the evaluation of WDS with respects to hydraulics, water quality and structural analysis methods. The methodologies have been developed which can be used to estimate the performance to water distribution network and software are implemented by the process. Developed systems are consisted with database, analysis techniques, simulation models, decision support systems and other tools. The concepts and functions are introduced in this paper and the performance index are discussed for accurate assessment of water distribution systems.

  • PDF

Effective Installation Methods of Down Conductors in Lightning Protection Systems (뇌보호시스템에서 인하도선의 효과적인 설치기법)

  • 이복희;엄주홍;이승칠;강성만
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.8-14
    • /
    • 2002
  • A modern lightning protection system is required to eliminate the risks such as electrical shocks and damages of structures, electrical and electronic equipments due to lightning. However, the conventional lightning protection systems play and important role in protecting persons and structures only. Thus an effective lightning protection system is indispensable today in computer, information and communication facilities and etc. The mafor objective of this paper is to develop the technology to protect electronics and computerized facilities against lightning-caused overvoltages. The study is oriented on the control of the potential rise of down conductors with the type and installation method of down conductors. As a result, to reduce side flashes and hazards caused by the potential rise of down conductor due to lightning current, the coaxial cable with a low characteristic impedance and high insulation level is suitable for a down conductor. In particular it is extremely effective to bond down conductors to the steel supporter, metal raceways and steel frame of structures.

Water Leakage Detection Monitoring Simulation using Power Spectrum Analysis (파워스펙트럼 분석을 이용한 누수탐지 모니터링 시뮬레이션)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • With the development of IT convergence technology and the construction of infrastructure for water leakage detection, the detection technology of damaged pileline's location and size is being spotlighted. The exhaustion of water resource due to the leakage of water supply facilities renders it urgent to detect water leakage effectively. In this paper, we proposed the water leakage detection monitoring simulation using the power spectrum analysis. We measured the reflected wave signal by the proposed water leakage detection monitoring simulation. The rate variability is calculated form the acquired reflected wave signal. And the power spectrum analysis using the Fast Fourier Transform is evaluated the correlation between the water leakage's size and the reflected wave. Ultimately, this paper suggests empirical simulation to verify the adequacy and the validity. Accordingly, the satisfaction and the quality of services will be improved the efficient management by supporting the real-time water leakage detection.