• Title/Summary/Keyword: 관통속도

Search Result 98, Processing Time 0.023 seconds

Evaluation of PWSCC at Dissimilar Metal Butt Welds in NPP (원전 이종금속 맞대기용접부 PWSCC 균열건전성평가)

  • Lee, Sung-Ho;Lee, Kyoung-Soo;Oh, Chang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1047-1052
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) instances have been reported in the Alloy 600 reactor pressure vessel head penetration nozzle and the Alloy 82/182 dissimilar metal butt weld nozzle in several PWRs. Therefore, in-service inspection programs have been adopted worldwide to prevent failure at the weld region. If a PWSCC is observed at the dissimilar metal weld region during inspection, its structural integrity should be evaluated; however, this requires considerable time and effort, and this might lead to a decrease in the plant utilization coefficient. To prevent this, KHNP-CRI have established integrity assessment criteria and developed a computer program for the fast evaluation and judgment of PWSCC. In this paper, the results and current status of the same are presented. Through this study, criteria for the structural integrity evaluation of PWSCC have been established, and a computer program has been developed to realize technical means for the evaluation of PWSCC structural integrity.

A Research on Characteristics of Internal Flow Based on the Gun Barrel Length and Ammunition Pressure. (포신 길이와 탄약 압력에 따른 포신 내부 유동 특성 연구)

  • Jung, Hee-Chur;Kim, Kyoung-Rok;Kang, Yo-Han;Ban, Young-Woo;Jung, Duck-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.513-520
    • /
    • 2018
  • This research concerns the characteristics of tank barrel inner flow according to the barrel length and the pressure of ammunition when fired. By analyzing the flow characteristics of the bore evacuator according to barrel length and ammunition pressure regarding ammunition design, it is possible to prevent the flareback phenomenon that may occur during ammunition operation. Through bore evacuator flow analysis by barrel length and ammunition pressure, we identified key design factors concerning barrel and ammunition compatibility including speed, accuracy, penetration performance and range. Test results found if barrel length is long and ammunition pressure is low, bore evacuator operation time is slow. Therefore, there is a high probability that propellant gas will enter the battle vehicle. Therefore, the correlation analysis method of bore evacuator flow characteristics based on barrel length and ammunition pressure is considered as a primary method to improve operational performance. When designing new ammunition, the correlation analysis method will be used to determine ammunition weight and select the propellant pressure.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.

Fatigue Characteristics according to the Shape of Cover Plate in Steel Plate Girders (강판형의 덮개판 형상에 따른 피로특성)

  • Jung, Young Hwa;Hong, Sung Wook;Kim, Ik Gyeom;Jung, Jin Suck
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.111-122
    • /
    • 2000
  • In this study, A series of fatigue tests have been performed on the fillet welded joints of cover plates in steel plate girders in order to quantitatively assess the fatigue characteristics according to the shapes of cover plates. From the results of fatigue tests, it has been shown that the fatigue strengths were slightly different according to their shapes, but satisfied the fatigue design curves in Korea and other countries. Also, from the results of beachmark tests, it has been confirmed that the points of fatigue crack initiation were closely related to the shapes of weld bead toes, and fatigue cracks simultaneously initiated from several points in weld bead toes have been grown as semi-elliptical surface cracks, and these cracks have been coalesced each other, and grown as through thickness cracks, and finally reached to fracture. Besides, from the results of fracture mechanics approaches, stress gradient factors were the most dominant factors among crack correction factors obtained from the existing equations and finite element analysis, and the fatigue life on fillet welded joints of cover plates could be estimated using the relations between fatigue crack growth rate and stress intensity factor range obtained from finite element analysis.

  • PDF

Effect on the Wake Flow according to Various length of Rectangular Cylinder in a Parallel Arrangement (병렬구조를 가진 장방형 실린더의 길이가 후류 유동에 미치는 영향)

  • Choe, Sang-Bom;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.760-767
    • /
    • 2014
  • An experimental study is carried out to investigate the effect of jet stream in the gab of rectangular cylinders with different length in a parallel arrangement by using PIV method in a circulating water channel. The height(h) of the rectangular cylinder and the gap between the cylinder is 10mm, and the width(B) which is 300mm. The length of the model for flow direction was applied to 30mm, 60mm, 90mm & 120mm, The aspect ratio of a model on the basis of height(H=30mm) is 1, 2, 3 and 4. Reynolds number $Re=1.4{\times}10^4$, $Re=2.0{\times}10^4$, $Re=2.9{\times}10^4$ based on the height(H) of model for the distance of tidal distributions as of water depth have been applied during the whole experiments. The measurement area was set to 5H rear of the cylinder. As a result, Vortex size in the wake area were increased as velocity increased. and high aspect ratio increased through-flow velocity component in the near wake. Velocity deficit increased highly after near-wake area and low aspect ratio.

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

Cu-Filling Behavior in TSV with Positions in Wafer Level (Wafer 레벨에서의 위치에 따른 TSV의 Cu 충전거동)

  • Lee, Soon-Jae;Jang, Young-Joo;Lee, Jun-Hyeong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • Through silicon via (TSV) technology is to form a via hole in a silicon chip, and to stack the chips vertically for three-dimensional (3D) electronics packaging technology. This can reduce current path, power consumption and response time. In this study, Cu-filling substrate size was changed from Si-chip to a 4" wafer to investigate the behavior of Cu filling in wafer level. The electrolyte for Cu filling consisted of $CuSO_4$ $5H_2O$, $H_2SO_4$ and small amount of additives. The anode was Pt, and cathode was changed from $0.5{\times}0.5cm^2$ to 4" wafer. As experimental results, in the case of $5{\times}5cm^2$ Si chip, suitable distance of electrodes was 4cm having 100% filling ratio. The distance of 0~0.5 cm from current supplying location showed 100% filling ratio, and distance of 4.5~5 cm showed 95%. It was confirmed good TSV filling was achieved by plating for 2.5 hrs.

Seepage Behaviors of Enlargement Levee Containing Box Culvert Constructed on Soft Ground (연약지반에 설치된 배수통문을 포함하는 하천 보축제체의 수문 위치에 따른 침투 거동)

  • Yang, Hak-Young;Kim, Young-Muk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2018
  • In the case of the enlargement levee on the soft foundation, the existing levee and the enlargement levee connection can be damaged due to heterogeneous subsidence such as differential settlement at the joint of the box culvert passing through the levee. This study selected the downstream region of the Geum River and then confirmed the influence of the piping possibility on the levee by performing a 2D seepage analysis and analyzing the seepage tendency according to the position of the box culvert's gate. As a result, the flow velocity and the hydraulic gradient are larger in the upper breakage than the lower breakage, and the upper leak was more vulnerable to the piping than the lower leak. If leaks occur in the gate located on the riverside land, the risk of piping is increased when the water level rises and is maintained highly. In the case of the gate located on the inland, it could be predicted that the leakage could damage the stability of levee by increasing the water pressure inside the levee. As a result, if leakage occurs at any position in the box culvert, the pore water pressure is increased or decreased compared with the case when no leakage occurs. Therefore, if the pore water pressure is drastically reduced or increased compared with the normal case, leakage may occur. However, the result of this study is based on a 2D seepage analysis, and it is likely to be different from actual cases. Therefore, more detailed analysis by 3D analysis is recommended.

A Study on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile (고속비상체의 충돌에 의한 고강도 콘크리트의 표면관입저항성 및 배면박리성상에 관한 연구)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Hwang, Heon-Kyu;Jeon, Joong-Kyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Concrete materials subjected to impact by high velocity projectiles exhibit responses that differ from those when they are under static loading. Projectiles generate localized effects characterized by penetration of front, spalling of rear and perforation as well as more widespread crack propagation. The magnitude of damage depends on a variety of factors such as material properties of the projectile, impact velocity, the mass and geometry as well as the material properties of concrete specimen size and thickness, reinforcement materials type and method of the concrete target. In this study, penetration depth of front, spalling thickness of rear and effect of spalling suppression of concrete by fiber reinforcement was evaluated according to compressive strength of concrete. As a result, it was similar to results of the modified NDRC formula and US ACE formula that the more compressive strength is increased, the penetration depth of front is suppressed. On the other hand, the increase in compressive strength of concrete does not affect spalling of rear suppression. Spalling of rear is controlled by the increase of flexural, tensile strength and deformation capacity.