• Title/Summary/Keyword: 관측

Search Result 14,010, Processing Time 0.047 seconds

Investigation of the Effect of Calculation Method of Offset Correction Factor on the GEMS Sulfur Dioxide Retrieval Algorithm (GEMS 이산화황 산출 현업 알고리즘에서 오프셋 보정 계수 산정 방법에 대한 영향 조사)

  • Park, Jeonghyeon;Yang, Jiwon;Choi, Wonei;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.189-198
    • /
    • 2022
  • In this present study, we investigated the effect of the offset correction factor calculation method on the sulfur dioxide (SO2) column density in the SO2 retrieval algorithm of the Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020. The GEMS operational SO2 retrieval algorithm is the Differential Optical Absorption Spectroscopy (DOAS) - Principal Component Analysis (PCA) Hybrid algorithm. In the GEMS Hybrid algorithm, the offset correction process is essential to correct the absorption effect of ozone appearing in the SO2 slant column density (SCD) obtained after spectral fitting using DOAS. Since the SO2 column density may depend on the conditions for calculating the offset correction factor, it is necessary to apply an appropriate offset correction value. In this present study, the offset correction values were calculated for days with many cloud pixels and few cloud pixels, respectively. And a comparison of the SO2 column density retrieved by applying each offset correction factor to the GEMS operational SO2 retrieval algorithm was performed. When the offset correction value was calculated using radiance data of GEMS on a day with many cloud pixels was used, the standard deviation of the SO2 column density around India and the Korean Peninsula, which are the edges of the GEMS observation area, was 1.27 DU, and 0.58 DU, respectively. And around Hong Kong, where there were many cloud pixels, the SO2 standard deviation was 0.77 DU. On the other hand, when the offset correction value calculated using the GEMS data on the day with few cloud pixels was used, the standard deviation of the SO2 column density slightly decreased around India (0.72 DU), Korean Peninsula (0.38 DU), and Hong Kong (0.44 DU). We found that the SO2 retrieval was relatively stable compared to the SO2 retrieval case using the offset correction value on the day with many cloud pixels. Accordingly, to minimize the uncertainty of the GEMS SO2 retrieval algorithm and to obtain a stable retrieval, it is necessary to calculate the offset correction factor under appropriate conditions.

The Surface Distribution of Dissolved Gases in the Southwestern East Sea: Comparison of the Primary Production and CO2 Absorption in Summer between Coastal Areas and the Ulleung Basin (동해 남서부해역의 표층 용존 기체 분포: 여름철 연안과 울릉분지의 일차생산력과 CO2 흡수 비교)

  • LEE, INHEE;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2021
  • The global coastal region is considered as a sink for atmospheric CO2. Since most of the studies in the East Sea focused on the Ulleung Basin, the importance of coastal region for carbon cycle has been overlooked. In this study, we compared the biological pump and CO2 absorption between the Ulleung Basin and coastal region by surface measurements of biological O2 supersaturation (𝚫O2/Ar) and partial pressure of CO2 (fCO2). Cold and less saline waters in the coastal regions were in contrast with a warm and saline water in the Ulleung Basin. The coastal waters near Samcheok and Pohang showed higher fluorescence, 𝚫O2/Ar, and lower fCO2 than those in the Ulleung Basin, indicating higher primary production and CO2 absorption in the areas. The average net community production estimated by 𝚫O2/Ar were 19 ± 6 and 60 ± 9 mmol O2 m-2d-1 in the Samcheok and Pohang, respectively, 2-7 times higher than that of 8 ± 4 mmol O2 m-2d-1 in the Ulleung Basin. Similarly, the average CO2 flux between the seawater and atmosphere were -17.1 ± 8.9 and -25.8 ± 13.2 mmol C m-2d-1 in the Samcheok and Pohang, respectively, 4-5 times higher than that of -4.7 ± 2.5 mmol C m-2d-1 in the Ulleung Basin. In the Samcheok and Pohang, degrees of N2 saturation were lower by 3% than that the ambient waters, suggesting the possibility of nitrogen fixation by primary producers.

Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation (통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측)

  • Han, Seok Gi;Joo, Ji Yong;Lee, Jun Ho;Park, Sang Yeong;Kim, Young Soo;Jung, Yong Suk;Jung, Do Hwan;Huh, Joon;Lee, Kihun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • Adaptive optics (AO) systems compensate for atmospheric disturbance, especially phase distortion, by introducing counter-wavefront deformation calculated from real-time wavefront sensing or prediction. Because AO system implementations are time-consuming and costly, it is highly desirable to estimate the system's performance during the development of the AO system or its parts. Among several techniques, we mostly apply statistical analysis, computational simulation, and optical-bench tests. Statistical analysis estimates performance based on the sum of performance variances due to all design parameters, but ignores any correlation between them. Computational simulation models every part of an adaptive optics system, including atmospheric disturbance and a closed loop between wavefront sensor and deformable mirror, as close as possible to reality, but there are still some differences between simulation models and reality. The optical-bench test implements an almost identical AO system on an optical bench, to confirm the predictions of the previous methods. We are currently developing an AO system for a 1.6-m ground telescope using a deformable mirror that was recently developed in South Korea. This paper reports the results of the statistical analysis and computer simulation for the system's design and confirmation. For the analysis, we apply the Strehl ratio as the performance criterion, and the median seeing conditions at the Bohyun observatory in Korea. The statistical analysis predicts a Strehl ratio of 0.31. The simulation method similarly reports a slightly larger value of 0.32. During the study, the simulation method exhibits run-to-run variation due to the random nature of atmospheric disturbance, which converges when the simulation time is longer than 0.9 seconds, i.e., approximately 240 times the critical time constant of the applied atmospheric disturbance.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.