• Title/Summary/Keyword: 관측환경

Search Result 3,339, Processing Time 0.042 seconds

Diagnosis of Irrigation Time Based on Microchange of Stem Diameter in Greenhouse Tomato (온실재배 토마토의 농직경 변화에 의한 관개시기 진단)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 1997
  • Stem diameter and shoot fresh weight of tomato grown in greenhouse were measured non-destructively at 10 minutes interval from 1 to 16 July, 1996 with displacement detector using strain gauges and with suspension-type load cell, respectively, and simultaneously were measured soil water potential, transpiration and solar radiation. Ample water was irrigated before experiment, and thereafter, irrigations were made on the next morning when visual symptoms of wilting appeared. Shoot fresh weight and stem diameter showed very similar patterns in diurnal changes which are characterized by predawn maximum and afternoon minimum and in long- term evolutions, suggesting that stem diameter shrinkage and expansion are closely related to plant water content and growth, respectively, Shoot weight and stem diameter reached minimum values a little later than the time on which transpiration showed maximum. The daily net gains of fresh weight(DG) and stem diameter(DI) showed significantly Positive correlations with solar radiation in those days on which plants were not water-stressed. However, Dl and DG on those days of water stress showed much lower values than expected from the relationships between solar radiation and them. Transpiration was much lower than the expected potential transpiration on 10 July, implying that plants were water-stressed. In this case water stress was not detected from visual symptom of wilting and/or soil water potential, but was able to be identified by the lower DI and DG than the expected. The maximum contraction of stem diameter(MC) and the maximum loss of fresh weight(ML) during daytime showed significantly positive correlations with solar radiation in those days on which plants were not water-stressed and were observed greater than expected from the relationships on severely water-stressed days. But mild water stress could not be discernable by ML and MC. It would be concluded that the daily net gains of fresh weight and/or stem diameter could be used as criteria for diagnosing the water status of tomato and for triggoring the onset of irrigation in automatic system.

  • PDF

Application of Molecular Biological Technique for Development of Stability Indicator in Uncontrolled Landfill (불량매립지 안정화 지표 개발을 위한 분자생물학적 기술의 적용)

  • Park, Hyun-A;Han, Ji-Sun;Kim, Chang-Gyun;Lee, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.128-136
    • /
    • 2006
  • This study was conducted for developing the stability parameter in uncontrolled landfill by using a biomolecular investigation on the microbial community growing through leachate plume. Landfill J(which is in Cheonan) and landfill T(which is in Wonju) were chosen for this study among a total of 244 closed uncontrolled landfills. It addressed the genetic diversity of the microbial community in the leachate by 165 rDNA gene cloning using PCR and compared quantitative analysis of denitrifiers and methanotrophs with the conventional water quality parameters. From the BLAST search, genes of 47.6% in landfill J, and 32.5% in landfill T, respectively, showed more than 97% of the similarity where Proteobacteria phylum was most significantly observed. It showed that the numbers of denitrification genes, i.e. nirS gene and cnorB gene in the J site are 7 and 4 times higher than those in T site, which is well reflecting from a difference of site closure showing 7 and 13 years after being closed, respectively. In addition, the quantitative analysis on methane formation gene showed that J1 spot immediately bordering with the sources has the greatest number of methane formation bacteria, and it was decreased rapidly according to distribute toward the outer boundary of landfill. The comparative investigation between the number of genes, i.e. nirS gene, cnorB gene and MCR gene, md the conventional monitoring parameters, i.e. TOC, $NH_3-N,\;NO_3-N,\;NO_2-N,\;Cl^-$, alkalinity, addressed that more than 99% of the correlation was observed except for the $NO_3-N$. It was concluded that biomolecular investigation was well consistent with the conventional monitoring parameters to interpret their influences and stability made by leachate plume formed in downgradient around the uncontrolled sites.

Uptake and Transformation of RDX by Perennial Plants in Poaceae Family (Amur Silver Grass and Reed Canary Grass) under Hydroponic Culture Conditions (수경재배조건에서 다년생 벼과식물(물억새 및 갈풀)에 의한 RDX 흡수 및 분해)

  • Park, Jieun;Bae, Bumhan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.237-245
    • /
    • 2014
  • Amur silver grass (Miscanthus sacchariflorus) and reed canary grass (Phalaris arundinacea) were selected for RDX removal experiments in hydroponic culture conditions based on vegetation survey at three shooting ranges in northern Kyunggi province. Seedling of two plants were grown in 1/4 strength Hoagland solution in quadruplicates containing 10, 20, 30, 40 mg/L RDX for 15 days along with control and blank treatments. During the 15 days of incubation, pH and RDX concentration in medium were routinely analyzed and RDX contents in the shoot and the root were determined after solvent extraction at the end of the experiments. Both plant species showed no symptoms of RDX phyto-toxicity. The pseudo first order RDX-removal constants for amur silver grass and reed canary grass were in the range of $0.0143{\sim}0.0484day^{-1}$ and $0.0971{\sim}0.1853^{-1}$, respectively. Plant biomass normalized RDX removal rates, which decreased with the increase of initial RDX concentration, were in the range of $0.27{\sim}1.01mL{\cdot}g^{-1}day^{-1}$ and $0.87{\sim}1.66mL{\cdot}g^{-1}day^{-1}$ for amur silver grass and reed canary grass, respectively. After 15 days of treatment, RDX removal from the medium decreased from 49.0% to 23.7% with increase in the initial RDX concentration in amur silver grass and 7.3% of the initial RDX remained in the plant. In reed canary grass planted medium, less than 16.8% and 5% of the initial RDX remained in the medium and in the plant, respectively. Large quantities of unidentified polar compound, which was not detected in amur silver grass, accumulated in the root and shoot of reed silver grass.

Ecophysiological Studies on the Population Dynamics of Two Toxic Dinoflagellates Alexandrium tamarense and Alexandrium catenella Isolated from the Southern Coast of Korea -I. Effects of Temperature and Salinity on the Growth (남해연안해역에서 분리한 유독와편모조류 Alexandrium tamarense와 Alexandrium catenella의 개체군 변화에 관한 생리.생태학적 연구 -I. 수온과 염분의 변화에 따른 성장 특성)

  • Oh, Seok-Jin;Park, Ji-A;Kwon, Hyeong-Kyu;Yang, Han-Soeb;Lim, Weol-Ae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • Effects of temperature and salinity on the growth of the toxic dinoflagellate $Alexandrium$ $tamarense$ and $A.$ $catenella$ isolated from the southern coast of Korea were examined in the laboratory. Growth experiment was conducted under the following combinations of temperature and salinity; 10, 15, 20, 25 and $30^{\circ}C$, 10, 15, 20, 25, 30 and 35 psu at a constant irradiance of 300 ${\mu}mol$ photons $m^{-2}s^{-1}$. Temperature and salinity conditions for maximum growth rate were indicated as follows: temperature $15^{\circ}C$ and salinity 30 psu (0.31 $d^{-1}$) in $A.$ $tamarense$, temperature $25^{\circ}C$ and salinity 30 psu (0.36 $d^{-1}$) in A. catenella. Temperature and salinity ranges for optimum growth condition of two species were $10{\sim}20^{\circ}C$, 25~35 psu and $120{\sim}30^{\circ}C$, 25~35 psu, respectively. The result of two-factor ANOVA indicated significant effects (P<0.001) of temperature and salinity on the growth rate, and two species were more effected by a temperature than a salinity on the growth. In addition, prediction equations were obtained through the multiple regressions of the specific growth rates as ${\mu}=0.04+0.0193T-0.0339S- 0.0005T^2+0.0021S^2+0.00073TS-0.000022T^3-0.000038S^3+0.00000086TS^2-0.0000255T^2S$ in $A.$ $tamarense$ and ${\mu}=1.01-0.1288T-0.0778S+0.0067T^2+0.0038S^2+0.00204TS-0.0001T^3-0.000059S^3-0.0000131TS^2-0.0000392T^2S$ in $A.$ $catenella$. Correlation coefficient between experimental values and simulated values was highly indicated. These results seem to provide information for understanding the spreading mechanism of $A.$ $tamarense$ and $A.$ $catenella$.

Comparative Evaluation of Neighborhood Parks in Korea and China based on the Place Attachment Model (장소애착 모델에 근거한 한국·중국 근린공원의 비교평가)

  • Yang, Lei;Lee, Shiyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.21-29
    • /
    • 2017
  • In this study of visitor place attachment to parks, Scannel and Gilford considered the dimensions of place attachment, and proposed the theoretical framework of PPP(Place, Person, Process) that should be systematically studied from the perspective of person, place and psychological processes. According to Scannel's theoretical basis, this paper puts forward the hypothesis of a structure model of place attachment. In the model, the five independent variables of people, places, cognition, emotion, and behavior have influenced the dependent variable of place attachment. The questionnaire was conducted on 18 neighborhood parks in Kunming, China, and the residents of the 5 neighborhood parks in Daejeon, South Korea. A total of 1,645 valid samples of the questionnaire survey were collected. Through confirmatory factor analysis(CFA) results of the inspection of the various elements, it was shown that the reliabilities of 6 latent variables, such as people, places, cognition, affection, behavior and place attachment, which were composed with the observed variables(30 observed variables in Daejeon, 19 observed variables in Kunming), were all above 0.7 and the data were fit for this study. The hypothesis test results found that the physical environment of the neighborhood parks such as a comfortable environment, pleasant road and convenient facilities would increase the rate of visitors coming back. From the park management perspective, to increase the amount of visitors to the park, the park should increase visibility, provide more organized, varied activities and meetings, or special exhibitions according to the particular characteristics of the individual park, to increase awareness of the park. From the park visitors' psychological perspective, visitors are seeking to enjoy the park facilities and environment not only to bring physical relaxation, but also to bring about a psychological cure. With the commonality of attachment structure between the two countries, to improve the place attachment of neighborhood park visitors, collecting regularly visitor feedback will facilitate the sustainable development of neighborhood park attachment.

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate (FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정)

  • Park, Sung Tae;Jung, Geum Hyang;Yoo, Hyung Joo;Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

The Role of Organic Amendments with Different Biodegradability in Ammonia Volatilization during Composting of Cattle Manure (우분뇨 퇴비화 중 암모니아 휘산에 대한 이분해성 및 난분해성 유기 첨가물의 역할)

  • Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Kwak, Jin-Hyeob;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • This study was conducted to investigate the roles of co-existed organic materials (OM) with different biodegradability in composting of cattle manure in terms of $CO_2$ emission and $NH_3$ volatilization. Either sawdust (SD, low biodegradability) or rice bran (RB, high biodegradability) was mixed with cattle manure at a various rate and the amounts of $CO_2$ emission and $NH_3$ volatilization were determined periodically during 4 weeks of composting. Percentage of dry matter loss during the composting period was also calculated. The amount of $CO_2$ emitted increased with increasing rate of OM and was significantly (P<0.01) higher in the RB treatment than in the SD treatment by 43 to 122% depending on the rate of OM Accordingly, % of dry matter loss during 4 weeks of composting was higher in the RB (rang: from 35.1 % to 41.5%) than that in the SD treatments (from 18.7% to 22.6%), showing that RB is more biodegradable than SD. During the early composting period up to 8 days, negligible amount of ammonia volatilization was detected in both treatments regardless of application rates. In the RB treatment, substantial amount of ammonia volatilization was detected thereafter, however, no meaningful ammonia volatilization was observed in the SD treatment until the end of composting. Such differences could be attributed to the different properties of SD and RB. For example, the high C/N ratio of SD could enhance $NH_4^+$ immobilization and thus decrease $NH_4^+$ concentration that is susceptible to ammonia volatilization. Binding of $NH_4^+$ on to phenolic compounds of SD may also contribute to the decrease in $NH_4^+$ concentration. Meanwhile, as RB has a relatively low C/N ratio, remineralization of immobilized $NH_4^+$ could increase $NH_4^+$ concentration as high as the level for the occurrence of ammonia volatilization. Therefore, our study suggests that OM which is resistant to biodegradation can reduce $NH_3$ volatilization largely by physico-chemical pathways across the entire composting period and that easily biodegradable OM can retard $NH_3$ volatilzation via microbial immobilization in the early period of composting followed by rapid remineralization, leading to substantial volatilization of $NH_3$ in the middle stage of composting.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

Oxidative Degradation of PCE/TCE Using $KMnO_4$ in Aqueous Solutions under Steady Flow Conditions (유동조건에서 $KMnO_4$도입에 따른 수용액중 PCE/TCE의 산화분해)

  • Kim, Heon-Ki;Kim, Tae-Yun
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.685-693
    • /
    • 2008
  • The rates of oxidative degradation of perchloroethene (PCE) and trichloroethene (TCE) using $KMnO_4$ solution were evaluated under the flow condition using a bench-scale transport experimental setup. Parameters which are considered to affect the reaction rates tested in this study were the contact time (or retention time), and the concentration of oxidizing agent. A glass column packed with coarse sand was used for simulating the aquifer condition. Contact time between reactants was controlled by changing the flow rate of the solution through the column. The inflow concentrations of PCE and TCE were controlled constant within the range of $0.11{\sim}0.21\;mM$ and $1.3{\sim}1.5\;mM$, respectively. And the contact time was $14{\sim}125$ min for PCE and $15{\sim}36$ min for TCE. The $KMnO_4$ concentration was controlled constant during experiment in the range of $0.6{\sim}2.5\;mM$. It was found that the reduction of PCE and TCE concentrations were inversely proportional to the contact time. The exact reaction order for the PCE and TCE degradation reaction could not be determined under the experimental condition used in this study. However, the estimated reaction rate constants assuming pseudo-1st order reaction agree with those reported based on batch studies. TCE degradation rate was proportional to $KMnO_4$ concentration. This was considered to be the result of using high inflow concentrations of reactant, which might be the case at the vicinity of the source zones in aquifer. The results of this study, performed using a dynamic flow system, are expected to provide useful information for designing and implementing a field scale oxidative removal process for PCE/TCE-contaminated sites.

The Outbreak of Red Tides in the Coastal Waters off Kohung, Chonnam, Korea: 1. Physical and Chemical Characteristics in 1997 (전남 고흥 해역의 유해성 적조의 발생연구: 1.물리${\cdot}$화학적인 특성)

  • Yang, Jae-Sam;Choi, Hyun-Yong;Jeong, Hae-Jin;Jeong, Ju-Young;Park, Jong-Kyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.16-26
    • /
    • 2000
  • Physical characteristics and nutrient distributions in seawater were investigated to understand the mechanism of red tide outbreak in coastal waters off Kohung area. To identify any physical and chemical differences before, during and after the red tide outbreaks, 6 times of field observations have been carried out from May to October, 1997. We found that major environmental properties of the seawater in the study area were determined not by the local meteoric conditions or nearby-land influences, but by the intrusion of seawater from offshore. In particular, extreme environmental variations in seawater were found during the period of red tide outbreak from August to September. Before the red tide outbreak, high concentrations of DIN(Dissolved Inorganic Nitrogen)were found in seawater, but they decreased during the outbreak. Whereas no significant variations of DIP(Dissolved Inorganic Phosphate) were found. For the water mass in the semienclosed northern part of the study area, local nutrient sources originated from nearby-lands were estimated to cover 70% of total DIN input, but the rest part of the water mass in the study area, sporadic intrusion of offshore water mass could account for the major source of DIN supply. An offshore water mass influenced by Yangtze river effluent was suggested as one of the candidates with its high nitrate contents, high seawater temperature and low salinity. A red tide related phytoplankton, Gyrodinium impudicum, was found in seawater on the 21th day of August and, on the same day, a unique water mass with high temperature and extremely low salinity suddenly appeared in the study area. On the 22th day of September, after one and half month duration of red tide we found that red tide had disappeared simultaneously with the intrusion of new water mass with different characteristics.

  • PDF