• Title/Summary/Keyword: 관측지점

Search Result 1,813, Processing Time 0.032 seconds

Spaciotemporal Distributions of PM10 Concentration and Their Correlation with Local Temperature Changes : a Case Study of Busan Metropolitan City (PM10 농도의 시공간적 분포 특징과 국지적 기온 변화 간의 상관관계: 부산광역시 사례 분석)

  • Park, Sunyurp
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.1
    • /
    • pp.151-167
    • /
    • 2017
  • The main objective of this study was to investigate the climatic impact of $PM_{10}$ concentration on the temperature change pattern in Busan Metropolitan City(BMC), Korea during 2001~2015. Mean $PM_{10}$ concentration of BMC has gradually declined over the past 15 years. While the highest $PM_{10}$ concentration was observed in spring followed by winter, summer, and fall on average, the seasonal variations of $PM_{10}$ concentration differed from place to place within the city. Frequency analysis showed that the most frequently observed $PM_{10}$ concentration ranged from $20{\mu}g/m^3$ to $60{\mu}g/m^3$, which accounted for 64.6% of all daily observations. Overall, the west-high and east-low pattern of $PM_{10}$ concentration was relatively strong during the winter when the effect of yellow-dust events on the air quality was weak. Comparative analyses between $PM_{10}$ concentration and monthly temperature slope derived from generalized temperature curves indicated that the decreasing trend of $PM_{10}$ concentration was associated with increases of annual temperature range, and $PM_{10}$ concentration had a negative relationship with the temperature slope of warming months. Overall, $PM_{10}$ concentration had a weak correlation with the annual mean temperature, but it had a significant, positive correlation with the winter season, which had a dominant influence on the annual mean temperature. In terms of energy budget, it has been known that the change in $PM_{10}$ concentration contributes to the warming or cooling effect by affecting the radiative forcing due to the reflection and absorption of radiant energy. The correlation between $PM_{10}$ concentration and temperature changes in the study area was not seasonally and spatially consistent, and its significance was statistically limited partly due to the number of observations and the lack of potential socioeconomic factors relevant to urban air quality.

  • PDF

Gridding of Automatic Mountain Meteorology Observation Station (AMOS) Temperature Data Using Optimal Kriging with Lapse Rate Correction (기온감률 보정과 최적크리깅을 이용한 산악기상관측망 기온자료의 우리나라 500미터 격자화)

  • Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.715-727
    • /
    • 2023
  • To provide detailed and appropriate meteorological information in mountainous areas, the Korea Forest Service has established an Automatic Mountain Meteorology Observation Station (AMOS) network in major mountainous regions since 2012, and 464 stations are currently operated. In this study, we proposed an optimal kriging technique with lapse rate correction to produce gridded temperature data suitable for Korean forests using AMOS point observations. First, the outliers of the AMOS temperature data were removed through statistical processing. Then, an optimized theoretical variogram, which best approximates the empirical variogram, was derived to perform the optimal kriging with lapse rate correction. A 500-meter resolution Kriging map for temperature was created to reflect the elevation variations in Korean mountainous terrain. A blind evaluation of the method using a spatially unbiased validation sample showed a correlation coefficient of 0.899 to 0.953 and an error of 0.933 to 1.230℃, indicating a slight accuracy improvement compared to regular kriging without lapse rate correction. However, the critical advantage of the proposed method is that it can appropriately represent the complex terrain of Korean forests, such as local variations in mountainous areas and coastal forests in Gangwon province and topographical differences in Jirisan and Naejangsan and their surrounding forests.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

The Influence of Land Use on Water Quality in the Tributary of the Yeongsan River Basin (영산강수계 소하천 유역의 토지이용이 하천수질에 미치는 영향 분석)

  • Jung, Jae-Woon;Lim, Byung-Jin;Cho, So-Hyun;Choi, Jin-Hee;Song, Kwang-Duck;Ha, Don-Woo;Kim, Hae-Sung;Park, Seung-Ho;Hwang, Tae-Hee;Jung, Soo-Jung;Lee, Dong-Jin;Kim, Kap-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.412-419
    • /
    • 2012
  • This study assessed the impacts of land use types on water quality in the tributary of the Yeongsan river basin. Temporal changes in water quality parameters (BOD, COD, TOC, T-P, T-N, SS) were investigated. 13 water sampling sites were selected; they were then collected and analyzed according to the standard method. The results showed that water quality parameters of the study sites ranged as follows : BOD, from 0.3 to $21.9mg\;L^{-1}$ (mean $3.3mg\;L^{-1}$); COD, from 1.0 to $38.0mg\;L^{-1}$ ($6.4mg\;L^{-1}$); TOC, from 0.6 to $20.0mg\;L^{-1}$ ($4.5mg\;L^{-1}$); T-P, from 0.009 to $1.973mg\;L^{-1}$ ($0.144mg\;L^{-1}$); T-N, from 0.6 to $17.1mg\;L^{-1}$ (mean $3.5mg\;L^{-1}$); SS, from 0.3 to $292.0mg\;L^{-1}$ ($20.3mg\;L^{-1}$). Generally, the paddy and upland dominated region had high concentrations of water quality parameters, whereas the forest dominated region had low concentrations. In addition, water quality parameters were positively correlated with paddy and upland, whereas the parameters were negatively correlated with forest. The result implies that paddy and upland are the dominant factors leading to stream pollution in the study sites, while a higher percentage of forest area contributes to improved water quality. Therefore, it is important to manage paddy and upland in order achieve efficient management of water quality.

Scour Prediction at Piers in the Bo Cheong Stream (보청천내(報靑川內) 교각설치(橋脚設置)에 따른 국부(局部) 세굴심도(洗掘深度)의 산정(算定))

  • Ahn, Sang Jin;Choi, Gyu Woon;Kim, Jong Sub;Ahn, Chang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.93-105
    • /
    • 1993
  • In this paper, the maximum scour depths at piers located in the Bo Cheong Stream, which is a tributary in the Geum River System, were calculated and compared using 24 local pier scour equations. The equations were classified as six groups by non-dimensional types of equations. The geometric data in the stream bed and pier data at San Seong, Yi Pyung and San Gye, which are IHP data collection stations, were utilized for applying the scour equations. The geometric data in the stream bed were obtained by analyzing the bed material sampled in three stations which are in the left side, middle and right side for stream direction. The maximum flow velocities at maximum flow depths which were measured from 1982 to 1991, were used as the hydraulic flow data. The pier data for predicting pier scour depths were measured in the fields. The maximum pier scour depths calculated using the equations were compared with the held scour depths measured in the streams or rivers in the world. Arunachalam, Shen-Karaki III, Jain-Fischer equations are selected as the proper local scour equations for predicting the maximum local scour depths at piers in the Bo Cheong Stream. Inglis-Lacey and Shen-Karaki II equations are applicable in case of rapid flows conditions in which Froude number is over 0.3. Froehlich, Laursen I, Laursen II, Neill, Melville equations are applicable in the slow flow conditions in which Froude number is less than 0.3. Blench equation or Inglis-Poona equation varies rapidly by changing Froude numbers. Therefore the equations should not be used without careful considerations in selecting the applicable ranges. The maximum local scour depths calculated using Sarma-Krishnamurthy, Ahmad, Coleman, Varzeliotis, Larras, Bata, Chitale, Venkatadri, Basik-Basamily-Ergun, U.S.G.S., Shen I equations are usually less than the scour depths measured in the fields.

  • PDF

A Study on Seasonal Variation of Water Content under Highway Asphalt Pavements Using Neutron Moisture Meter (중성자 수분측정기를 이용한 고속도로 포장의 계절별 함수량 변화 측정에 관한 연구)

  • Song Kwan-Cheol;Lee Sang-Mo;Yoo Sun-Ho;Ryu Kwan-Sik;Park Moo-Eon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.156-166
    • /
    • 2000
  • This study was carried out to provide the information on seasonal variations of water content under highway asphalt pavements which influence on the dynamic behaviour and durability of pavements, and to assess the correlation between water content and soil or meteorological factors. Total eight sites for water content measurement which included fives sites in Kyungbu, two sites in Honam, and one site in Youngdong Highway were selected considering the variations in geology, topology and meteorology factors over all the country. Water contents under asphalt pavements were measured up to 170 cm depth every two week for total 13 months of August 1992 through September 1993 using neutron moisture meter(CPN-503DR). The range of water content ($\theta$$_{w}$) at the upper soils of above 50 cm depth was 7~12% and was not quite different regardless of sites, except for Iseo site. However, soil water contents below 60 or 70 cm depth were significantly different between the measurement sites, that is, the lowest water content was 5% at Kyungsan site and the highest water content was 20% at Iseo site. For all the sites, seasonal variations in water content during the experimental period were little, their range was within only 1 to 4%. Seasonal variations of water content in original or cutting area, which were 4% more or less, were slightly larger than in bedding areas, which were below 2%. Water contents under asphalt pavements had statistically significant positive correlations with silt and clay content in soil, but there were little correlations between water content and meteorological factors such as precipitation, relative humidity, mean air temperature, and wind velocity.

  • PDF

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

The Characteristics of Runoff for Hwacheon dam watershed (화천댐 상류유역의 유출거동 특성)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1069-1077
    • /
    • 2009
  • Lately, it is an important concern in water resources research to maintain a stable water supply according to a future climate change and an increase in water use. In Han-River basin, approximately 10 % of water resources that is provided the capital region (Gyeonggi, Seoul etc.) has been reduced as a consequence of the construction of Imnam Dam (storage volume: 27 billion $m^3$) located in the upper Hwacheon Dam upstream area. Therefore, streamflows have decreased in Bukhangang basin, but it could not be evaluated quantitatively. In this study, SWAT-K which is the physically based long-term runoff simulation model, was used in order to evaluate the effect of Imnam Dam on the reduced inflow to Hwacheon Dam according to the change of hydrological condition in the upstream area of Hwacheon Dam. For the model input data of North Korea area, meteorological data of GTS (Global Telecommunication System) were used, and soil maps by FAO/UNESCO (2003) were applied. Temporal variations of water resources is investigated with comparison of observed and simulated inflows at Hawcheon Dam site. Also, annual, monthly, seasonal decreases in water resources were evaluated using the flow duration analysis of simulated streamflows with or without Imnam dam.

Geochemical Characteristics of Groundwater during the Constant and Step-drawdown Pumping Tests at the River Bank Filtration Site (장기 및 단계 양수시험 시 강변여과 지하수의 수질변화 특성)

  • Kim, Gyoobum;Shin, Seonho;Kim, Byungwoo;Park, Joonhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.11-21
    • /
    • 2013
  • In-situ test to find the change of $Fe^{2+}$ and $Mn^{2+}$ concentrations and ion contents in groundwater was conducted during two pumping tests at the riverbank filtration site, where is the riverine area of the Nakdong River in Changnyeong-Gun. Groundwater was sampled at one pumping well and 10 monitoring wells during a 5 steps drawdown pumping test with the rates from $500m^3/day$ to $900m^3/day$ and a constant pumping test with $800m^3/day$. The change in ion concentration of groundwater was more remarkable during a step drawdown pumping test than a constant pumping test. Especially, the decrease in $Fe^{2+}$ and $Mn^{2+}$ concentrations was distinct in a step drawdown pumping test and it happens predominantly along the direction that the radius of pumping influence was small due to a good aquifer connectivity to a pumping position. The precipitation and the oxidation of iron and manganese were caused by an air inflow and a disturbance in groundwater flow due to an abrupt change in pumping rate. The pumping rate and spatial distribution of an aquifer around a pumping well need to be considered as an important factor for the development of in-situ iron and manganese treatment technology.

A Study on Improving the Position Accuracy of the Magnetic North used in Surveillance Imaging Equipments (통합형 구조의 감시정찰 영상장비에서 자북의 위치 정확도 개선에 관한 연구)

  • Shin, Young-Don;Lee, Jae-Chon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • The surveillance imaging equipments are functioning to observe the shape of the target in real time or to measure its location precisely. The roles of such equipments are becoming more important in today's weapon systems.The aforementioned imaging equipments can be classified based on the modes of operations such as fixed, installed on cars, or composite of those. Also, according to different concepts of sensor operation, a separate type uses independent housing for each sensor whereas in a composite type a set of multiple sensors are housed into a unit altogether. The sensors in general have magnetism, thereby introducing the possible negative effects, particularly in the composite types, in locating the reference position, which is carried out by the digital compass. The use of shielding material/housing could be an option but results in increased weight and reduced portability, restricting its use in composite type equipments. As such, the objective of this paper is to study on how to reduce such magnetic effects on the position location. To do so, in the absence of magnetic shielding, a variety of sensor positions were first modeled. By combing the result with the fact that the functions of PAN & Tilt are used in the equipments, a new position location algorithm is proposed. The use of the new algorithm can automate the position location process as compared to the manual process of the existing approach. In the algorithm developed, twelve locations are measured in connection with both the azimuth and elevation angles in comparison to the six locations alone around the azimuth angle. As a result, it turns out that the measurement range has been widened but the measurement time reduced. Also, note that the effect of errors the operators may make during measurement could be reduced.