• 제목/요약/키워드: 관측신뢰도

검색결과 332건 처리시간 0.016초

분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측 (High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS)

  • 김소현;김보미;이가림;이예원;노성진
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.333-346
    • /
    • 2024
  • 수량과 수질 및 수생태를 동시에 고려한 수자원 관리를 위해서는 신뢰도 높은 중기 유량 예측 기술이 필수적이다. 이를 위해서는 기상자료의 특성에 대한 이해와 더불어, 시공간 해상도가 낮은 기상예측 정보를 고해상도 분포형 수문모형에서 효과적으로 활용하는 기술이 중요하다. 본 연구에서는 분포형 수문모형 WRF-Hydro와 선행시간 288시간까지의 기상정보를 제공하는 Global Data Assimilation and Prediction System (GDAPS)를 활용해 고해상도 중기 유량 예측을 수행하고 적용성을 검토하였다. 이를 위해 대상 유역인 낙동강 지류 금호강 유역에 대해 100 m 공간해상도의 WRF-Hydro모형을 구축하고 기상지상관측자료 Automatic Weather Stations (AWS)& Automated Synoptic Observing Systems (ASOS), 기상수치예보모형 GDAPS, 기상재분석자료 Global Land Data Assimilation System (GLDAS)를 입력자료로 적용한 유량 예측 모의 결과를 비교하였다. 2020~2022년 기간 3개의 강우사상에 대해 유역 평균 누적 강우량을 분석 결과, AWS&ASOS대비 GDAPS는 36%~234%, GLDAS 재분석자료는 80%~153% 범위의 과소 및 과대 산정되었음을 확인하였다. AWS&ASOS입력자료로 한 유량 예측 결과는 KGE, NSE지표가 유역 말단 강창교 지점 기준 0.6이상이었으나, GDAPS 기반 유량 모의는 강우 사상에 따라 KGE 값이 0.871~-0.131로 큰 변동성이 확인되었다. 한편, 첨두 유량 오차는 GDAPS가 GLDAS보다 크거나 비슷했지만, 첨두 홍수 발생시간의 오차는 AWS&ASOS, GDAPS, GLDAS가 각각 평균 3.7시간, 8.4시간, 70.1시간으로, 첨두 발생시간 측면에서는 GDAPS의 오차가 GLDAS보다 적었다. GDAPS를 입력자료로 한 WRF-Hydro 고해상도 중기 유량 예측은 첨두 유량의 불확실성은 크지만, 첨두 유량 발생시점에 대한 정확도는 상대적으로 높아 수자원 시설 운영에 효과적으로 활용될 수 있을 것으로 판단된다.

천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과 (Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II)

  • 배수정;이은경;;이경상;김민상;최종국;안재현
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1565-1576
    • /
    • 2023
  • 천리안 해양위성 2호(Geostationary Ocean Color Imager-II, GOCI-II)에서 관측된 대기상층 복사휘도에서 해양환경 분석이 가한 원격반사도(remote-sensing reflectance, Rrs) 자료를 얻기 위해서 복사 전달 모델 기반의 대기 보정을 수행한다. 이 Rrs는 다시 엽록소, 총부유사, 용존유기물 농도 등의 다양한 해양환경변수 산출에 이용되고 있기 때문에 대기보정은 모든 해색 산출물의 정확도에 영향을 주는 중요한 알고리즘이다. 맑은 해역에서는 대기의 복사휘도가 청색 파장대의 해수 복사휘도보다 10배 이상 높다. 따라서 대기보정 과정에서 1%의 대기 복사휘도 추정 오차가 10% 이상의 Rrs 오차를 유발할 수 있으며, 이처럼 대기보정은 매우 높은 오차 민감도를 가진 알고리즘이다. 그 결과 대기보정 산출물인 Rrs의 품질 평가는 신뢰성 있는 해양 위성 기반 자료 분석을 위해 반드시 선행되어야 한다. 본 연구에서는 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS)을 통해 데이터베이스화 된 현장 측정 Rrs 기반 통계적 신뢰성을 평가하는 Quality Assurance (QA) 알고리즘을 GOCI-II의 분광 특성에 맞게 수정 및 적용하였다. 이 방법은 National Oceanic and Atmospheric Administration (NOAA)의 해색위성 자료처리 시스템에 공식적으로 적용되어 서비스 중이며, Rrs의 품질 분석 점수(0~1점)를 제공할 뿐 아니라 해수의 유형(23 유형)도 구분해 준다. 실제로 검보정 초기 단계의 GOCI-II 자료에 QA를 적용한 결과, Rrs는 비교적 낮은 값인 0.625에서 가장 높은 빈도를 보여주었지만 추가적인 검보정을 통해 개선된 GOCI-II 대기보정 결과에 QA 알고리즘을 적용했을 시 기존보다 높은 0.875에서 가장 높은 빈도를 보여주었다. QA 알고리즘을 통한 해수 유형 분석 결과, 동해 및 남해 일부 그리고 북서태평양 해역은 주로 탁도가 낮은 case-I 해역이었으며 서해 연안 및 동중국해는 주로 탁도가 높은 case-II 해역으로 구분되었다. 이처럼 QA 알고리즘의 적용을 통해 대기보정 과정에서 오차가 크게 발생한 Rrs 자료를 객관적으로 판별하여 배제할 수 있으며 이는 배포자료 및 검보정의 신뢰도 향상으로 이어질 수 있다. 본 방법은 추후 GOCI-II의 대기보정 flag에 적용되어 사용자들이 양질의 Rrs 자료만을 적용할 수 있도록 도움을 줄 것이다.