• 제목/요약/키워드: 관측변수

검색결과 1,415건 처리시간 0.025초

한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인 (GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula)

  • 김희영;박경애;곽병대;주희태;이준수
    • 한국지구과학회지
    • /
    • 제43권5호
    • /
    • pp.604-617
    • /
    • 2022
  • 해수면온도는 해양-대기의 현상을 이해하고 기후변화를 예측하기 위해 사용되는 중요한 변수이다. 마이크로파 영역의 인공위성 원격탐사는 구름과 강수와 같은 기상현상 위성 관측 측기의 경로에 존재하더라도 해수면온도 획득을 가능하게 한다. 따라서 마이크로파 해수면온도의 높은 활용도를 고려하면 위성 해수면온도를 정확도를 지속적으로 검증하고 오차 특성을 분석할 필요가 있다. 본 연구에서는 2014년 3월부터 2021년 12월까지 약 8년 동안 Global Precipitation Measurement (GPM)/GPM Microwave Imager (GMI) 마이크로파 해수면온도의 정확도를 표층 뜰개 부이 수온 자료를 사용하여 검증하였다. GMI 해수면온도는 실측 해수면온도에 비해 0.09 K의 편차와 0.97 K의 평균 제곱근 오차를 보였고, 이는 기존 연구 결과에 비해 다소 높게 나타났다. 이외에도 GMI 해수면 온도의 오차 특성은 위도, 연안과의 거리, 해상풍 및 수증기량과 같은 환경적 요인과 관련성이 있다. 오차는 육지에서 300 km 이내의 거리에서 해안 지역에 가까운 지역과 고위도 지역에서 증가하는 경향이 있다. 또한 낮에는 약한 풍속(<6 m s-1), 밤에는 강한 풍속(>10 m s-1) 범위에서 상대적으로 높은 오차가 나타났다. 대기 수증기는 30 mm 미만의 매우 낮은 범위 또는 60 mm보다 큰 매우 높은 범위에서 높은 해수면온도 차이에 기여했다. 이러한 오차들은 저수온에서 GMI 자료의 정확도가 떨어지는 기존 연구와 일치하며, 연안으로부터의 거리, 풍속, 수증기량에 의한 오차의 경우 육지와 해양의 방사율 차이 및 바람에 의한 해수면 거칠기 변화, 수증기의 마이크로파 대기 흡수에서 기인하는 것으로 추정된다. 이는 한반도 주변해에서 마이크로파 위성 계산 SST를 보다 광범위하게 활용하기 위해서는 GMI 해수면온도 오차의 특성에 대한 이해가 필요함을 시사한다.

중기예보를 이용한 태양광 일사량 예측 연구 (A study on solar radiation prediction using medium-range weather forecasts)

  • 박수진;김효정;김삼용
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.49-62
    • /
    • 2023
  • 급속적으로 비중이 증가하고 있는 태양광 에너지는 지속적인 개발 및 투자가 이루어지고 있다. 신재생에너지 정책인 그린뉴딜과 가정용 태양광 패널의 설치가 증가함에 따라 국내 태양광 에너지 보급이 점차 확대되어 그에 맞추어 발전량의 정확한 수요 예측 연구가 활발하게 진행되고 있는 시점이다. 또한, 일사량 예측이 발전량 수요 예측에 가장 영향을 미치는 요소로 작용하고 있다는 점에서 일사량 예측의 중요성을 파악하였다. 덧붙여, 본 연구는 선행 연구들에서 사용되지 않은 중기예보 기상 데이터를 활용하여 일사량 예측을 하고자 하였다는 점에서 가장 큰 차이점을 확인할 수 있다. 본 논문에서는 서울, 인천, 수원, 춘천, 대구, 대전의 총 여섯 지역의 태양광 일사량 예측을 위하여 다중선형회귀모형, KNN, Random Forest 그리고 SVR 모형과 클러스터링 기법인 K-means 기법을 결합한 후, 클러스터별 확률밀도함수를 계산하여 시간별 일사량 예측을 진행하고자 하였다. 중기예보 데이터를 사용하기 전, 모형 예측 결과를 비교하기 위한 지표로서 MAE (mean absolute error)와 RMSE (root mean squared error)를 사용하였다. 데이터는 2017년 3월 1일부터 2022년 2월 28일까지의 시간별 원 관측 데이터를 중기예보 데이터 양식에 맞추어 일별 데이터로 변환하였다. 모형의 예측 성능 비교 결과, Random Forest로 일별 일사량을 예측한 후, K-means 클러스터링으로 기후요인이 유사한 날짜들을 분류한 뒤 클러스터별 일사량의 확률밀도함수를 계산하여 시간별 일사량 예측값을 나타낸 방법이 가장 우수한 성능을 보였다. 또한 이 방법론을 이용하여 중기예보 데이터에 모형 적합 후, 예측 결과를 확인하였을 때, 일자별로 예측 오류가 상승하는 것을 확인할 수 있었다. 이는 중기예보 기상데이터의 예측 오류로 인한 것으로 보인다. 향후 연구에서는 중기예보 데이터에서 활용할 수 있는 기상요인 중, 강수 여부와 같은 외생 변수를 추가하거나 시계열 클러스터링 기법을 적용한 연구가 이루어져야할 것으로 보인다.

산림지역에서의 2023년 봄철 꽃나무 개화시기 예측 (Prediction of Spring Flowering Timing in Forested Area in 2023)

  • 서지희;김수경;김현석;천정화;원명수;장근창
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.427-435
    • /
    • 2023
  • 이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.

연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型) (A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors)

  • 정영상;이변우;김병찬;이양수;엄기태
    • 한국토양비료학회지
    • /
    • 제23권2호
    • /
    • pp.87-93
    • /
    • 1990
  • 토양(土壤)의 깊이별 지온(地溫)을 예측(豫測)하기 위한 통계모형(統計模型)을 설정(設定)하기 위하여 1979년(年)부더 1988년(年)까지 중앙기상태(中央氣象台) 수원측후소(水原測候所)에서 관측(觀測)된 지온자료(地溫資料)와 평균최고(平均最高), 최저(最低), 기온(氣溫), 강수량(降水量), 풍속(風速) 및 최심적설량등(最深積雪量等) 기상자료(氣象資料)에 대(對)한 통계분석(統計分析)을 하였다. 통계분석(統計分析)은 지온(地溫)을 Fourier 급수(級數)에 의한 년주기함수(年週期函數)와 년주기함수(年週期函數)에서의 잔차(殘差)는 대기(大氣)의 기상조건(氣象條件)의 변화(變化)에서 오는 노이지(nuise)로 보고 이에 대한 상관분석(相關分析)을 stepwise backward elimination법(法)에 의하여 각(各) 계수(係數)를 찾는 방법(方法)으로 하였다. 깊이별(別) 지온(地溫)의 년주기함수(年週期函水)로 Fourier급수(級數)의 8항(項)을 사용(使用)하였을 때 지면온도(地面溫度)의 평균평방오차(平均平方誤差)가 2.30, 토심(土深) 50 cm에서 1.13, 500 cm에서 0.42로 토심(土深)이 깊을수록 작아졌고, $r^2$는 0.913~0.988이었다. 주기함수분석(週期函數分析)에서 잔차(殘差)에 대한 독립변수(獨立變數)로서 평균(平均), 최고(最高), 최저기온(最低氣溫), 강수량(降水量), 최심적설(最深積雪) 및 풍속등(風速等) 기상요소(氣象要素)와의 상관분석(相關分析)을 위한 지연일수검출(遲延日數檢出)에 따르면, 기온(氣溫)은 토탐(土深) 0 cm와 5 cm에 대하여 0일(日), 30 cm까지는 -1일(日), 50 cm에서는 -2일(日)이었다. 강수량(降水量)의 지연일수(遲延日數)는 30 cm까지 -1일(日), 50 cm에서 -2일(日), 최심적설(最深積雪)과 풍속(風速)은 10 cm까지가 -1일(日), 30 cm까지 -2일(日), 50 cm에서는 -3일(日)이었다. 지연일수(遲延日數)를 고려(考慮)한 잔차분석(殘差分析)에 의한 지온예측(地溫豫測) 통계모형(統計模型)의 평균평방오차(平均平方誤差)는 토심(土深) 0 cm에서 1.64, 50 cm에서 0.97로 주기함수(週期函數)의 평균평방오차(平均平方誤差)보다 작아졌으며, $r^2$값은 높아져 통계모형(統計模型)의 정도(精度)가 높아졌다. 계수(係數)의 크기로 보아 년주기함수(年週期函數)에 독립적(獨立的)인 대기(大氣) 기상요소(氣象要素)가 지온(地溫)의 결정(決定)에 크게 영향(影響)을 주는 깊이는 30 cm이며, 기온(氣溫)은 50 cm깊이까지도 영향(影響)을 주는 것으로 나타났다. 이 통계모형(統計模型)의 검정결과(檢定結果) $r^2$값이 0.976~0.996으로 예측치(豫測値)와 실측치간(實測値間)에 고도(高度)의 유의성(有意性)이 있어 실용성(實用性)이 있었다. 한편, 토양표면(土壤表面)의 최고지온(最高地溫)과 최고기온(最高氣溫)의 차(差)(${\Delta}T_{ms}$)를 옥수수포장(圃場)에서 조사(調査)한 결과(結果), ${\Delta}T_{ms}$와 일사량(日射量)($R_s;J_m{^{-2}}$)과 직선적(直線的)인 관계(關係)로 엽면적지수(葉面積指數)가 그 이하(以下) 일 때에는 $${\Delta}T_{ms}=0.902+1.924{\times}10^{-3}R_s $$엽면적지수(葉面積指數)가 그 이상(以上)일 때에는 $${\Delta}T_{ms}=0.274+8.881{\times}10^{-4}R_s$$ 의 관계(關係)가 있었다.

  • PDF

천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과 (Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II)

  • 배수정;이은경;;이경상;김민상;최종국;안재현
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1565-1576
    • /
    • 2023
  • 천리안 해양위성 2호(Geostationary Ocean Color Imager-II, GOCI-II)에서 관측된 대기상층 복사휘도에서 해양환경 분석이 가한 원격반사도(remote-sensing reflectance, Rrs) 자료를 얻기 위해서 복사 전달 모델 기반의 대기 보정을 수행한다. 이 Rrs는 다시 엽록소, 총부유사, 용존유기물 농도 등의 다양한 해양환경변수 산출에 이용되고 있기 때문에 대기보정은 모든 해색 산출물의 정확도에 영향을 주는 중요한 알고리즘이다. 맑은 해역에서는 대기의 복사휘도가 청색 파장대의 해수 복사휘도보다 10배 이상 높다. 따라서 대기보정 과정에서 1%의 대기 복사휘도 추정 오차가 10% 이상의 Rrs 오차를 유발할 수 있으며, 이처럼 대기보정은 매우 높은 오차 민감도를 가진 알고리즘이다. 그 결과 대기보정 산출물인 Rrs의 품질 평가는 신뢰성 있는 해양 위성 기반 자료 분석을 위해 반드시 선행되어야 한다. 본 연구에서는 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS)을 통해 데이터베이스화 된 현장 측정 Rrs 기반 통계적 신뢰성을 평가하는 Quality Assurance (QA) 알고리즘을 GOCI-II의 분광 특성에 맞게 수정 및 적용하였다. 이 방법은 National Oceanic and Atmospheric Administration (NOAA)의 해색위성 자료처리 시스템에 공식적으로 적용되어 서비스 중이며, Rrs의 품질 분석 점수(0~1점)를 제공할 뿐 아니라 해수의 유형(23 유형)도 구분해 준다. 실제로 검보정 초기 단계의 GOCI-II 자료에 QA를 적용한 결과, Rrs는 비교적 낮은 값인 0.625에서 가장 높은 빈도를 보여주었지만 추가적인 검보정을 통해 개선된 GOCI-II 대기보정 결과에 QA 알고리즘을 적용했을 시 기존보다 높은 0.875에서 가장 높은 빈도를 보여주었다. QA 알고리즘을 통한 해수 유형 분석 결과, 동해 및 남해 일부 그리고 북서태평양 해역은 주로 탁도가 낮은 case-I 해역이었으며 서해 연안 및 동중국해는 주로 탁도가 높은 case-II 해역으로 구분되었다. 이처럼 QA 알고리즘의 적용을 통해 대기보정 과정에서 오차가 크게 발생한 Rrs 자료를 객관적으로 판별하여 배제할 수 있으며 이는 배포자료 및 검보정의 신뢰도 향상으로 이어질 수 있다. 본 방법은 추후 GOCI-II의 대기보정 flag에 적용되어 사용자들이 양질의 Rrs 자료만을 적용할 수 있도록 도움을 줄 것이다.