물 이용 효율(water use efficiency, WUE)은 생태계의 에너지-물질-정보의 흐름과 연관된 프로세스-구조 사이의 관계에 대한 정보를 제공하는 중요한 생태학적 지표로 간주된다. 생태계 단위의 WUE 는 총일차생산량(gross primary productivity, GPP)과 증발산(evapotranspiration, ET)의 비로 정의될 수 있다. 이 연구에서는 국립수목원에 위치한 전나무(Abies holophylla) 조림지의 WUE 를 조사하기 위해 KoFlux 에서 장기간(2007-2015) 에디공분산 방법으로 관측된 이산화탄소와 수증기 플럭스를 사용하였다. 연구의 목적은 전나무 조림지의 WUE의 계절 및 경년 변동을 규명하여 탄력(resilience) 평가를 위한 총체적인 생태학적 지표의 개발에 활용하는 것이다. 분석 결과에 따르면, 전나무 조림지의 WUE는 8월에 최소값($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$), 2월에 최대값($5.1-11.4g\;C\;(kg\;H_2O)^{-1}$)을 갖는 오목한 형태의 계절 변동을 보였다. 성장기(4 월-10 월)의 WUE 는 평균 $3.5{\pm}0.3g\;C{\cdot}(kg\;H_2O)^{-1}$ 이었고, 휴면기(11 월-3 월)의 WUE는 평균 $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$로서 경년 변동의 폭이 컸다. 이 전나무 조림지의 WUE 는 문헌에 보고된 다른 온대 지역 침엽수림의 WUE 와 비교했을 때, 상대적으로 높은 범위에 속한다. 성장기는 4 월부터 10 월까지의 기간으로 정의하였으나, 실제 성장기의 길이(growing season length, GSL)는 매년 변화하였고, 이러한 GSL의 변화가 성장기 WUE의 경년 변동의 62%를 설명하였다. 이 연구는 생태계 단위 WUE의 장기 변동을 정량화 한 국내 첫 결과로서, 산림생태계 모형, 위성 알고리즘 및 탄력을 시험하는 데 활용할 수 있다.
1983년(年) 부터 1992년(年) 까지 계속하여 재배(栽培)하여온 전남(全南) 승주군(昇州郡) 해룡면(海龍面) 농가(農家) 도장(圖場)에서 조사(調査)한 택사(澤瀉)의 주요특성(主要特性)과 재배기간중(栽培期間中) 관측(觀測)된 기상자료(氣象資料)를 이용(利用)하여 생육(生育) 및 수양(收量)과 기상요인(氣象要因)과의 상관관계(相關關係), 분산(分散) 및 수양(收量) 추정식(推定式)을 유도(誘導)한 결과(結果)는 다음과 같다. 1. 기상요인중(氣象要因中) 변리(變異)가 큰 것은 10월(月) 의 강수량(降水量)과 11월(月)의 최저기온(最低氣溫)으로서 변리계수(變異係數) (C.V)는 각각 106.44%와 144.08%였으며, 7월(月), 8월(月), 9월(月)의 평균기온(平均氣溫)과 최고기온(最高氣溫) 및 최저기온(最低氣溫)은 비교적 변리(變異)가 적었다. 2. 생육(生育) 및 수양형질(收量形質)의 변리계수(變異係數)는 수양형질중(收量形質中) 생근중(生根重)은 30.62% 건근중(乾根重)은 31.8%서 년차간(年次間) 변리(變異)가 아주 켰고 묘장(苗長)과 경장(莖長)은 $5.51{\sim}6.26%$로 변리(變異)가 중간정도였으며 엽폭(葉幅), 엽장(葉長), 경수(莖數) 및 근경(根莖)은 $1.08%{\sim}3.23%$로 변리(變異)가 아주 적어서 이들 형질(形質)은 년차간(年次間) 변리(變異)가 적음을 알 수 있었다. 3. 기상요인(氣象要因) 택사생육(澤瀉生育) 및 수양형질간(收量形質間)의 상관(相關)에서는 11월(月)의 최고기온(最高氣溫)과 엽장(葉長), 경장(莖長), 경수(莖數), 및 건근중(乾根重)에서 5% 수준(水準)의 유의성(有意性) 있는 정(正)의 상관(相關)이 인정(認定)되었다. 4.생육(生育) 및 수양형질(收量形質) 상호간(相互間)의 상관(相關)에서는 모두가 정(正)의 상관(相關)으로 고도(高度)의 유의성(有意性)이 인정(認定)되었으며 11월(月)의 최고기온(最高氣溫)을 이용(利用)하여 경수(莖數)를 추정(推定)한 결과(結果) $Y_1=4.114+0.5333\;X\;(R^2=0.4410)$,의 직선회귀식(直線回歸式)을 유도(誘導)할 수 있었고, 역시 11월(月)의 최고기온(最高氣溫)을 이용(利用)하여 건근중(乾根重)수양(收量)의 추정식(推定式) 유도(誘導)한 결과(結果)$Y_2=55.0405+14.3233\;X\;(R^2=0.4511)$의 직선회귀식(直線回歸式)을 얻을 수 있었으며 이들에 대한 분산(分散) 분석(分析)에서도 유의성(有意性)이 인정(認定)되었기에 수양(收量)에 대한 추정식(推定式)을 이용(利用)하여 이논적(理論的) 수양(收量)과 실제수양(實際收量)의 오차(誤差)를 구(求)한 결과(結果) l0%미만(未滿)의 차이(差異)를 보여 비교적 잘 적중되었다.
본 실험은 비닐온실 내에서 0%, 35%, 55%, 75% 차광처리에 따른 진달래($Rhododendron$$mucronulatum$ Turcz.)와 영산홍($R.$$indicum$ (L.) Sweet) 묘목의 생리적 반응을 조사하기 위하여 수행되었다. 차광처리는 생육 후반기인 2008년 9월 9일부터 11월 5일까지 시행되었다. 차광처리는 9월의 낮 온도를 0.9-$1.7^{\circ}C$, 10월에는 0.8-$1.7^{\circ}C$ 정도를 낮추는 효과가 관측되었다. 차광처리 전 진달래 및 영산홍의 함수율은 각각 68.5%, 66.3%이었으며, 차광처리 기간 후 75% 차광 하의 진달래의 함수율은 66.2%로써 3.4%가 감소하였으며, 영산홍은 65.9%로써 0.6%가 감소하였다. 두 수종 모두 차광 수준이 높아질수록 감소율이 낮아지는 유사한 경향을 보였다. 영산홍의 광합성능력은 차광 수준이 높아질수록 높았는데 75% 차광에서 $9.63{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 가장 높았다. 한편, 세포간극 내 $CO_2$의 농도, 기공전도도 및 증산율 역시 전광 하의 묘목에 비하여 차광처리에 따라 높았는데 55%, 35% 및 75% 차광순이었다. 수분이용효율은 전광의 묘목이 차광처리 묘목에 비하여 상대적으로 높은 것으로 조사되었다. 차광처리를 받지 않은 진달래 잎색은 자주색에 가까운 색으로 변색한 반면, 차광처리 수준이 높을수록 육안으로도 녹색이 지속되고 있는 것이 관찰되었다. 이러한 차광 수준별 진달래 잎색의 변화를 Munsell Color Chart로 정리한 결과 전광의 경우 R(red)과 Y(yellow) chart의 색이 많은 반면 차광 수준이 높을수록 G(green), Y의 chart에 속하는 비율이 높아 여전히 녹색을 많이 띄고 있었다.
최근 상수원 수질관리에 있어서 팔당호 수질악화에 직접적으로 영향을 주는 경안천 유역관리에 대한 관심이 증가하여 적절한 대책이 필요하다. 이를 위해 SWAT 모델을 적용하여 유역 내 점 비점오염원에 따른 오염물질 발생 특성을 평가하고자 하였으며, 연구결과는 향후 경안천 유역의 효율적인 수질관리를 위한 기초자료로서 도움이 되고자 한다. BASINS는 유역의 오염현황을 신속하고 용이하게 파악가능하고 예측모형의 입력자료를 자동적으로 생성해주기 때문에, BASINS 적용을 위한 공간입력자료인 유역 경계와 하천도, DEM, 토지 이용도, 토양도 등을 tool 형식에 맞게 변환하고 입력하여 SWAT과 같은 유역모델을 연구목적에 맞게 적용할 수 있었다. 연구목적에 맞게 모델을 적절히 적용하기 위하여 유량, SS, TN, 그리고 TP순으로 2004년부터 2008년까지 일별로 검 보정 하였고, 모델 통계 치와 효율 산정 및 산포도 작성을 통해 모델의 정량적, 정성적 모의특성을 판단하였다. 유량의 경우 실측값에 대한 모의 경향이 잘 반영 되었으며, SS, TN, TP의 경우 특정기간에서 과대 또는 과소평가 되었으나 유역이라는 광범위하고 복합적인 특성과 그 안에서의 복잡한 수질기작 등을 고려해 볼 때 허용할 수 있는 범위에서 실측값을 적절히 묘사한 것으로 판단되었다. 그러나 결과의 정확한 해석과 적용을 위해서는 보다 상세한 측정자료 확보 및 검 보정 작업이 필요하며, 특히 점오염원 배출현황에 대한 관측자료의 검증을 통해 이상 치들의 정확성을 개선할 필요가 있다. 년간 오염부하량을 산정한 결과, SS와 TP의 경우 강우량이 증가함에 따른 유출량 변화가 비점오염부하량 변화에 영향을 미치는 것으로 나타났다. TN은 점오염부하량이 매년 유사한 범위에서 산정되였으나, 유량증가에 따른 질소성분의 희석이나 산화효과로 인하여 질소농도 감소가 비점오염부하량 감소로 나타났다. 수계오염총량관리 기술지침에 의해 산정된 배출부하량과 비교한 결과, 총량에서는 본 연구결과가 2${\sim}$3배 가량 더 작으며, 비점오염 부하량의 경우 더 큰 것으로 나타났다. 원단위를 이용하여 부하량을 산정할 경우 유달개념이 고려되지 않고 단순 강우유출비만을 고려하기 때문에 나타나는 결과라고 판단되였다. 연중 일정하게 나타나는 점오염원의 특성파는 달리, 비점오염원에 의한 부하량은 강우가 집중되는 6${\sim}$9월에 61.8${\sim}$88.7%수준으로 크게 증가하며 강우유출량에 많은 영향을 받는 것을 알 수 있었으나, TN과 TP는 평수기 및 저수기 (10${\sim}$5월)에 점오염원에 의한 영향이 크게 나타났다. 이는 저수기에 흐르는 경안천 유량의 많은 양이 용인시와 광주시에 위치한 환경기초시설의 방류량이며, 이에 따라 하절기 비점오염뿐만 아니라 저수기의 수질개선을 위한 관리 또한 적절히 필요한 것으로 판단되었다.
본 연구에서는 고농도 미세먼지의 발생과 연관된 대기패턴을 조사하고, 이를 바탕으로 한반도의 고농도 미세먼지의 발생을 예측할 수 있는 지수를 개발하였다. 또한 개발된 지수를 이용하여 미래의 한반도 고농도 미세먼지 발생과 연관된 대기 패턴의 변화를 살펴보았다. 서울지역 미세먼지 농도의 변동성을 조사하기 위해, 황사 발생 사례일을 제외한 미세먼지 고농도 사례일은 대기환경기준에 따라 24시간 평균 $PM_{10}$ 농도가 $100{\mu}g/m^3$ 이상일 경우로 정의하였다. 미세먼지 연평균 농도는 2001년부터 꾸준히 감소하는 경향을 보이며, 2012년 이후에 감소 추세가 주춤하였으며, $PM_{10}$ 고농도 사례일수도 2003년부터 2016년까지 대체로 감소하였다. 그러나 4일 이상 지속되었던 고농도 사례만을 살펴보면 2001년과 2003년을 제외하고 뚜렷한 감소 경향을 찾아보기 어렵고 전반적인 대기질 향상에도 불구하고 지속적으로 발생하는 것을 알 수 있다. 4일이상 지속되는 고농도 사례는 최근 들어 뚜렷한 경향을 보이지 않고, 기상조건 등의 다른 발생원이 있음을 알 수 있다. 그러므로 고농도 사례에 대한 대기 순환장의 특징을 살펴보기 위해 한반도의 고농도 사례일에 대한 대기패턴의 합성장을 분석하였다. 고농도 사례가 발생하였을 경우, 한반도 상공에 고기압에 위치하면서, 극의 찬 공기의 유입을 차단하며, 상층 동서 방향 바람은 한반도 북쪽으로 흐르게 된다. 따라서 한반도 지역은 차고 건조한 북서풍이 약화되고, 풍속이 감소된다. 이러한 한반도 미세먼지 고농도 사례와 연관된 대기패턴을 바탕으로 겨울철 한반도 $PM_{10}$ 농도를 전망하기 위한 미세먼지 고농도 지수를 정의하여 사용하였다. 먼저 500 hPa 지위고도, 500 hPa 동서 방향 바람 성분, 850 hPa 남북 방향 바람 성분과 $PM_{10}$과의 상관성이 높은 지역에서 각 변수를 영역 평균하고 표준화 과정을 거친 후 각 변수에 대한 지수를 계산하고, 각 지수의 합으로 한반도 미세먼지 고농도 지수 (KPI)를 정의하였다. 한반도 미세먼지 고농도 지수를 CMIP5에 참여하는 10개의 기후모형에 적용하여 미래 한반도의 고농도 미세먼지를 발생시킬 수 있는 대기패턴의 변동성을 살펴보았다. 겨울철 한반도에서 대기의 정체를 유발하여 심한 대기오염을 발생시킬 수 있는 기상 조건의 빈도가 기후변화에 따라 크게 증가하는 것으로 나타났다. 이러한 증가는 한반도 주변의 평균 대기 상태의 변화와 일치한다 (Cai et al, 2017). 이 연구는 $PM_{10}$ 관측자료 기간이 2001년부터 2016년까지의 총 16년 동안의 자료 만을 이용하여 한반도 고농도 미세먼지 발생과 관련된 대기패턴을 분석하였기에 대기오염과 연관된 기상조건을 완벽하게 식별하지는 못하였을 것이다. 향후 연구를 통해서 $PM_{10}$과 더불어 $PM_{2.5}$의 자료를 활용하여 상세한 분석이 필요할 것으로 보인다. 그럼에도 불구하고, 본 연구의 결과는 지구 온실가스 배출로 인한 대기 순환의 변화가 한반도 고농도 미세먼지 발생 사례를 증가시키는 중요한 역할을 할 수 있음을 시사한다. 지구 온난화가 심해진다면, 작은 대기 오염 배출이라도 축적이 되어 고농도 미세먼지 현상이 발생 할 수 있다. 따라서 대기 오염 배출 저감 노력뿐만 아니라, 온실가스 배출량을 줄이기 위한 노력이 동시에 필요할 것으로 사료된다.
우리나라 농산촌 환경의 가장 큰 특징 중 하나는 지형이 복잡하여 좁은 지역 내에서도 기상/기후 분포변이가 크다는 점이다. 이를 효과적으로 모의하기 위하여 '소기후 모형'이 개발되었고 현재까지 지속적으로 개선 연구가 진행되고 있다. 소기후 모형은 우리나라 전역에 대해 농장필지 단위까지 공간적으로 정밀한 농업기상/기후 정보를 표현할 수 있는 모형으로 기후요소별로 독자적으로 개발되었다. 소기후모형을 이용하여 2000년대에는 국지규모의 현재평년 및 미래 시나리오 기반 기후정보를 산출하였다. 평년 전자기후도는 과거 30년 기간의 월별 최저기온, 최고기온, 강수량, 일사량을 30 m 격자해상도로 상세화 한 분포도이며, 이 전자기후도를 기반으로 미래 기후변화 시나리오를 고해상도로 상세화하여 제작하였다. 이 들 전자기후도는 농업분야 기후변화 영향평가에 다양한 형태로 재가공 되어 이용되었다. 2010년대에는 농장맞춤형 기상 실황 및 예보자료를 국지규모로 생성하고 있다. 소기후 모형은 지속적인 개선 과정을 통해 일별 관측기상자료를 기반으로 실황정보를 상세화하는 기술로 발전하고 있으며, 기상청 동네예보 및 중기예보를 30 m 격자해상도로 상세 모의하여 농업분야 종사자에게 예측 정보를 실시간 제공할 수 있는 '농업기상 재해 조기경보 서비스' 기반의 핵심기술로 인정 받고 있다. 현재 상세 기상 실황 및 예보정보로는 일 최저 및 최고기온과 강수량, 일사량, 일조시간 등이 산출되고 있으며, 과거-현재-미래의 농장규모 기상정보를 토대로 각종 농작물의 생육정보와 기상재해 예측정보를 생산하고 있다.
에어로솔은 입자의 크기와 조성 및 관측센서에 따라 상이한 분광특성을 보이기 때문에, 다양한 센서의 에어로솔 산출물에 대한 비교분석이 반드시 필요하다. 그러나, 우리나라에서 다종위성의 공식적인 AOD (Aerosol Optical Depth) 산출물을 대상으로 수년간의 자료를 수집하여 정확도 비교평가를 수행한 사례는 아직 보고된 바가 없다. 이에, 본 연구에서는 2015년 1월부터 2019년 12월까지 MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, Sentinel-3 AOD 산출물과 AERONET (Aerosol Robotic Network) 지상 태양광도계 자료의 비교분석을 통하여 위성 AOD의 성능을 평가하고, 계절적 및 지리적 차이에 따른 정확도 특성을 분석하였다. 오랜 기간 축적되어온 산출 기술에 MAIAC (Multiangle Implementation of Atmospheric Correction) 알고리듬을 추가하여 최적화된 MODIS 산출물이 가장 높은 정확도를 나타냈고(CC=0.836), VIIRS와 Himawari-8이 그보다 약간 낮은 정도의 성능을 보였으며, Sentinel-3는 비교적 최근에 발사되어 알고리듬 최적화가 아직 덜 이루어진 관계로 정확도가 낮게 나타났다. MODIS, VIIRS, Himawari-8 AOD 산출물은 계절에 따라, 그리고 도시/비도시에 따라 별다른 정확도 차이를 보이지는 않았지만, 일부 해안지역에서는 혼합화소 문제로 인하여 약간 정확도가 떨어지는 경우도 존재했다. AOD는 위성영상 대기보정의 핵심 인자이기 때문에, 본 연구의 AOD 비교평가는 향후 국토위성, 농림위성 등의 대기보정 연구에도 중요한 참고자료가 될 것으로 사료된다.
해양 이상 자료 탐지의 연구는 이전부터 활발하게 이루어지고 있으며, 통계 및 거리 기반의 기계 학습 알고리즘을 활용하는 기법들이 개발되었다. 최근에는 AI 기반의 해양 자료 이상 탐지 기법이 많은 관심을 받고 있으며, AI를 활용한 해양 이상 자료 탐지 기법은 정답이 주어지는 지도학습 기법이 주를 이루고 있다. 이러한 방법은 학습에 필요한 모든 자료에 수작업으로 분류 정보(라벨)를 지정해야 한다는 점에서 많은 시간과 비용이 요구된다. 본 연구에서는 이러한 문제를 극복하기 위해 비지도학습 기반의 오토인코더를 이상 자료 탐지 기법에 사용하였다. 실험으로는 오토인코더의 평가를 위해 단변수·다변수학습 두가지 실험을 구성하였고, 단변수 학습은 기상청에서 제공하는 덕적도 부이 정점 관측 자료 중 수온만 사용하였으며, 다변수 학습은 수온과 기온, 풍향, 풍속, 기압, 습도 등을 사용하였다. 사용기간은 1996~2020년의 25년간이며 학습 자료에 해양-기상 자료의 특성을 고려한 전처리 기법을 적용하였다. 학습된 다변수와 단변수 오토인코더를 활용하여 실제 표층 수온에 대한 이상 탐지를 시도하였다. 모델성능 비교를 위해 오차를 삽입한 합성 자료에 다변수와 단변수 오토인코더를 포함한 여러 이상 탐지 기법을 적용하여 정량적으로 평가하였으며, 다변수/단변수의 정확도가 각각 약 96%/91%로써 다변수 오토인코더가 더 나은 이상자료 탐지 성능을 보였다. 오토인코더를 이용한 비지도학습 기반 이상 탐지 기법은 주관적 판단에 의한 오류와 자료 라벨링에 필요한 시간과 비용을 줄일 수 있다는 점에서 다양하게 활용될 것으로 판단된다.
기존의 녹조 모니터링은 현장 채수에 의한 국지적인 조사로 인해 녹조 발생 및 확산 규모 등에 대한 공간적 분포 파악에 한계가 있다. 이에 본 연구에서는 무인항공기 및 다중분광센서를 이용하여 녹조 모니터링을 수행하고, 녹조 분포 현황 자료를 산출하고자 하였다. 조류 우심구간인 낙동강 하류에 위치한 물금·매리 구간을 대상으로 현장조사 및 다중분광영상 촬영을 수행하였다. 현장 채수 시료의 Chlorophyll-a(Chl-a) 값과 분광지수(Spectral Index)들의 상관관계로 도출한 Chl-a 추정식을 비교 분석하였다. 그 결과 분광지수 중 Maximum Chlorophyll Index(MCI)가 가장 높은 통계적 유의성(R2=0.91, RMSE=8.1mg/m3)을 나타냈다. Chl-a 농도가 가장 높은 2021년 08월 05일 영상에 MCI를 적용하여 녹조 분포 지도를 작성하였고, 이로부터 산출한 수계 면적은 1.7km2이며, 조류경보제 발령 단계 중 경계(Warning) 면적은 1.03km2(60.56%), 대발생(Algal Bloom) 면적은 0.67km2(39.43%)를 나타내었다. 또한 연구기간 동안(2021년 07월 01일~2021년 11월 01일) 취득된 영상 내 "경계" 이상에 해당하는 영역에 대한 발생 일수를 계산한 결과, 하천 전 구간에서 최소 12회에서 최대 19회까지 "경계" 이상의 Chl-a 농도가 관측되었다. 본 연구에서 산출한 다중분광영상의 Chl-a 농도와 녹조발생지수는 녹조에 대한 공간적 분석이 용이하므로 조류경보제와 같은 현장 채수 위주의 지점 단위 자료를 보완할 수 있을 것으로 기대된다.
본연구에서는 제주도의 중제주 수역 내에 위치하는 총 12개 지하수 관정에서 미래 30일 기간의 지하수위를 예측할 수 있는 모델을 개발하였다. 예측 모델개발을 위해 시계열 예측에 적합한 딥러닝 기법의 하나인 누적 장단기 메모리(stacked-LSTM) 기법을 이용하였으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량 및 지하수위 자료가 예측 모델개발에 활용되었다. 특히, 본 연구에서는 입력자료의 종류 및 과거 자료의 순차 길이에 따라 다양한 모델을 구축하고 성능을 비교함으로써 딥러닝 기반 예측 모델개발에서 고려하여야 할 사항에 대한 검토와 절차를 제시하였다. 예측 모델개발 결과, 강수량, 지하수 이용량 및 과거 지하수위를 모두 입력자료로 활용하는 모델의 예측성능이 가장 뛰어난 것으로 확인되었으며, 입력으로 활용되는 과거 자료의 순차가 길수록 예측의 성능이 향상됨을 확인하였다. 이는 제주도의 깊은 지하수위 심도로 인하여 강수와 지하수 함양 간 지연시간이 길기 때문으로 판단된다. 이뿐만 아니라, 지하수 이용량 자료의 경우, 모든 이용량 자료를 활용하는 것보다 예측하고자 하는 지점의 지하수위에 민감한 영향을 주는 관정을 선별하여 입력자료로 이용하는 것이 예측 모델의 성능 개선에 긍정적 영향을 주는 것을 확인하였다. 본 연구에서 개발된 지하수위 예측 모델은 현재의 강수량 및 지하수 이용량을 기반으로 미래의 지하수위를 예측할 수 있어 미래의 지하수량에 대한 건전성 정보를 제공함에 따라 적정 지하수량 유지를 위한 다양한 관리방안 마련에 도움이 될 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.