• Title/Summary/Keyword: 관심영역 추출

Search Result 411, Processing Time 0.027 seconds

Algorithm for Extract Region of Interest Using Fast Binary Image Processing (고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.634-640
    • /
    • 2018
  • In this paper, we propose an automatic extraction algorithm of region of interest(ROI) based on medical x-ray images. The proposed algorithm uses segmentation, feature extraction, and reference image matching to detect lesion sites in the input image. The extracted region is searched for matching lesion images in the reference DB, and the matched results are automatically extracted using the Kalman filter based fitness feedback. The proposed algorithm is extracts the contour of the left hand image for extract growth plate based on the left x-ray input image. It creates a candidate region using multi scale Hessian-matrix based sessionization. As a result, the proposed algorithm was able to split rapidly in 0.02 seconds during the ROI segmentation phase, also when extracting ROI based on segmented image 0.53, the reinforcement phase was able to perform very accurate image segmentation in 0.49 seconds.

Infrared Image Segmentation by Extracting and Merging Region of Interest (관심영역 추출과 통합에 의한 적외선 영상 분할)

  • Yeom, Seokwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.493-497
    • /
    • 2016
  • Infrared (IR) imaging is capable of detecting targets that are not visible at night, thus it has been widely used for the security and defense system. However, the quality of the IR image is often degraded by low resolution and noise corruption. This paper addresses target segmentation with the IR image. Multiple regions of interest (ROI) are extracted by the multi-level segmentation and targets are segmented from the individual ROI. Each level of the multi-level segmentation is composed of a k-means clustering algorithm an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering algorithm initializes the parameters of the Gaussian mixture model (GMM) and the EM algorithm iteratively estimates those parameters. Each pixel is assigned to one of clusters during the decision. This paper proposes the selection and the merging of the extracted ROIs. ROI regions are selectively merged in order to include the overlapped ROI windows. In the experiments, the proposed method is tested on an IR image capturing two pedestrians at night. The performance is compared with conventional methods showing that the proposed method outperforms others.

An Efficient Object Extraction Scheme for Low Depth-of-Field Images (낮은 피사계 심도 영상에서 관심 물체의 효율적인 추출 방법)

  • Park Jung-Woo;Lee Jae-Ho;Kim Chang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1139-1149
    • /
    • 2006
  • This paper describes a novel and efficient algorithm, which extracts focused objects from still images with low depth-of-field (DOF). The algorithm unfolds into four modules. In the first module, a HOS map, in which the spatial distribution of the high-frequency components is represented, is obtained from an input low DOF image [1]. The second module finds OOI candidate by using characteristics of the HOS. Since it is possible to contain some holes in the region, the third module detects and fills them. In order to obtain an OOI, the last module gets rid of background pixels in the OOI candidate. The experimental results show that the proposed method is highly useful in various applications, such as image indexing for content-based retrieval from huge amounts of image database, image analysis for digital cameras, and video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing system.

  • PDF

Adaptive ROI Extraction Method for Palmprint Recognition (장문인식을 위한 적응적 관심영역 추출 방법)

  • Kim, Min-Ki
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.336-338
    • /
    • 2010
  • 장문인식은 손바닥 중앙부에 나타난 손금과 주름의 패턴을 이용하여 개인을 식별하는 것으로, 효과적인 장문인식을 위해서는 이러한 패턴이 나타나는 관심영역(ROI: region of interest)에 대한 안정적인 추출이 필요하다. 본 논문에서는 윤곽선의 형태 정보를 토대로 적응적으로 굴곡점의 위치를 찾아내고 이로부터 ROI를 추출하는 방법을 제안한다. 제안된 방법의 성능을 확인하기 위하여 유도 막대가 없는 자연스런 장문획득 장치에 의해 수집된 장문영상을 대상으로 실험을 수행하였다. 실험결과 제안된 방법은 손의 위치 변화나 회전에 무관하게 장문영상으로부터 안정적으로 ROI를 추출함을 확인할 수 있었다.

  • PDF

A Method of Extracting Candidate Regions of Interest in Color Image (컬러 이미지에서의 후보 관심 영역 검출 방법)

  • Park, Hyung-Kun;Lee, Yill-Byung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.462-464
    • /
    • 2012
  • 이미지를 입력으로 사용하는 다양한 응용 분야에서, 이미지에 포함되어 있는 객체의 의미를 이해하는것은 매우 중요하다. 이미지에 포함된 객체의 인식을 위해 우선적으로 관심 영역을 추출하는 경우, 인식하고자 하는 대상의 특징에 대한 사전 지식이나 입력된 이미지에서의 위치, 색, 그리고 크기 정보를 이용하는 것이 일반적이다. 그러나 이미지로부터 사전 지식이 전무한 불특정 다수의 객체에 대한 의미를 추론해야 하거나 그로부터 정보를 수집해야 하는 경우, 이러한 관심 영역 추출 방법은 효과적이지 않다. 본 논문에서는 이를 위해 컬러 이미지를 입력으로 사용하는 응용에서 이미지의 양자화 된 색 정보와 다중 저해상도 정보만을 이용하여 관심 객체가 될 가능성이 있는 후보 관심 영역들을 포함하는 최소 장방형 영역들을 구조적 정보와 함께 추출할 수 있는 방법을 제안한다.

ROI Video Compression Based on Spatiotemporal Saliency Map (중요도 지도에 기반한 관심 영역 비디오 압축)

  • Kim, Hansang;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.254-255
    • /
    • 2014
  • 본 논문에서는 중요도 지도에 기반한 관심 영역 동영상 압축 방법에 대해 고찰한다. 동영상 압축은 손실 프로세스이기 때문에 관심 영역에서의 정보 손실 최소화가 필요하며, 이를 위해 중요도 감지 과정에서 추출되는 중요도 지도의 신뢰도가 중요하다. 따라서 다양한 다른 기법의 중요도 지도 적용 결과를 비교함으로써 중요도 지도 추출 알고리즘의 요건에 대해 추론하고, 추출된 중요도 지도를 이용하여 적절하게 동영상을 부호화하는 방법에 대해 제안한다. 마지막으로 실험결과를 통해 보완되어야 할 부분을 제시한다.

  • PDF

Barcode Region of Interest Extraction Method Using a Local Pixel Directions in a Multiple Barcode Region Image (다중 바코드 영역을 가지는 영상에서 지역적 픽셀 방향성을 이용한 바코드 관심 영역 추출 방법)

  • Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2121-2128
    • /
    • 2015
  • In this paper presents a method of extracting reliable and regions of interest (ROI) in barcode for the purpose of factory automation. backgrounds are separated based on directional components and the characteristics of detected patterns. post-processing is performed on candidate images with analysis of problems caused by blur, rotation and areas of high similarity. In addition, the resizing factor is used to achieve faster calculations through image resizing. The input images contained multiple product or barcode for application to diverse automation environments; a high extraction success rate is accomplished despite the maximum shooting distance of 80 cm. Simulations involving images with various shooting distances gave an ROI detection rate of 100% and a post-processing success rate of 99.3%.

The High-Speed Extraction of Interest Region in the Parcel Image of Large Size (대용량 소포영상에서 관심영역 고속추출 방법에 관한 연구)

  • Park, Moon-Sung;Bak, Sang-Eun;Kim, In-Soo;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.691-702
    • /
    • 2004
  • In this paper, we propose a sequence of method which extrats ROIs(Region of Interests) rapidly from the parcel image of large size. In the proposed method, original image is spilt into the small masks, and the meaningful masks, the ROIs, are extracted by two criterions sequentially The first criterion is difference of pixel value between Inner points, and the second is deviation of it. After processing, some informational ROIs-the areas of bar code, characters, label and the outline of object-are acquired. Using diagonal axis of each ROI and the feature of various 2D bar code, the area of 2D bar code can be extracted from the ROIs. From an experiment using above methods, various ROIs are extracted less than 200msec from large-size parcel image, and 2D bar code region is selected by the accuracy of 100%.

A Study on Candidate Region Verification Method of MaxiCode in the Logistics Image (물류 영상에서 MaxiCode 후보 영역 검증 방법에 관한 연구)

  • Kim, Il-Sook;Park, Moon-Sung
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.867-870
    • /
    • 2005
  • 인터넷 및 전자상거래의 발전으로 인해 물류가 급증하고 있다. 물류 인수인계 문서 및 물류 정보의 전달 수단으로서 2 차원 바코드가 사용되는데 본 논문에서는 MaxiCode 에 대한 관심영역 추출 결과를 검증하는 방법을 제시하였다. 제안된 방법은 물류상에 바코드 영역 추출 방법에 의해 여러 종류의 바코드 중에서 MaxiCode 영역인지 검증하는 방법으로써 검증 후보 영역 설정, 후보 영역으로부터 중심점 획득, 중심점 검증 단계로 MaxiCode 의 영역 검증 방법을 제시한 것이다.

  • PDF

Design and Implementation of Eye-Gaze Estimation Algorithm based on Extraction of Eye Contour and Pupil Region (눈 윤곽선과 눈동자 영역 추출 기반 시선 추정 알고리즘의 설계 및 구현)

  • Yum, Hyosub;Hong, Min;Choi, Yoo-Joo
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this study, we design and implement an eye-gaze estimation system based on the extraction of eye contour and pupil region. In order to effectively extract the contour of the eye and region of pupil, the face candidate regions were extracted first. For the detection of face, YCbCr value range for normal Asian face color was defined by the pre-study of the Asian face images. The biggest skin color region was defined as a face candidate region and the eye regions were extracted by applying the contour and color feature analysis method to the upper 50% region of the face candidate region. The detected eye region was divided into three segments and the pupil pixels in each pupil segment were counted. The eye-gaze was determined into one of three directions, that is, left, center, and right, by the number of pupil pixels in three segments. In the experiments using 5,616 images of 20 test subjects, the eye-gaze was estimated with about 91 percent accuracy.

  • PDF