• Title/Summary/Keyword: 관심영역 자동추출

Search Result 74, Processing Time 0.023 seconds

A Hierarchical Grid Alignment Algorithm for Microarray Image Analysis (마이크로어레이 이미지 분석을 위한 계층적 그리드 정렬 알고리즘)

  • Chun Bong-Kyung;Jin Hee-Jeong;Lee Pyung-Jun;Cho Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2006
  • Microarray which enables us to obtain hundreds and thousands of expression of gene or genotype at once is an epoch-making technology in comparative analysis of genes. First of all, we have to measure the intensity of each gene in an microarray image from the experiment to gain the expression level of each gene. But it is difficult to analyze the microarray image in manual because it has a lot of genes. Meta-gridding method and various auto-gridding methods have been proposed for this, but thew still have some problems. For example, meta-gridding requires manual-work due to some variations in spite of experiment in same microarray, and auto-gridding nay not carried out fully or correctly when an image has a lot of noises or is lowly expressed. In this article, we propose Hierarchical Grid Alignment algorithm for new methodology combining meta-gridding method with auto-gridding method. In our methodology, we necd a meta-grid as an input, and then align it with the microarray image automatically. Experimental results show that the proposed method serves more robust and reliable gridding result than the previous methods. It is also possible for user to do more reliable batch analysis by using our algorithm.

A Region-based Comparison Algorithm of k sets of Trapezoids (k 사다리꼴 셋의 영역 중심 비교 알고리즘)

  • Jung, Hae-Jae
    • The KIPS Transactions:PartA
    • /
    • v.10A no.6
    • /
    • pp.665-670
    • /
    • 2003
  • In the applications like automatic masks generation for semiconductor production, a drawing consists of lots of polygons that are partitioned into trapezoids. The addition/deletion of a polygon to/from the drawing is performed through geometric operations such as insertion, deletion, and search of trapezoids. Depending on partitioning algorithm being used, a polygon can be partitioned differently in terms of shape, size, and so on. So, It's necessary to invent some comparison algorithm of sets of trapezoids in which each set represents interested parts of a drawing. This comparison algorithm, for example, may be used to verify a software program handling geometric objects consisted of trapezoids. In this paper, given k sets of trapezoids in which each set forms the regions of interest of each drawing, we present how to compare the k sets to see if all k sets represent the same geometric scene. When each input set has the same number n of trapezoids, the algorithm proposed has O(2$^{k-2}$ $n^2$(log n+k)) time complexity. It is also shown that the algorithm suggested has the same time complexity O( $n^2$ log n) as the sweeping-based algorithm when the number k(<< n) of input sets is small. Furthermore, the proposed algorithm can be kn times faster than the sweeping-based algorithm when all the trapezoids in the k input sets are almost the same.

Design And Implementation Of The Automatic Rubric Generation System For The NEIS Based Performance Assessment Using Data Mining Technology (NEIS시스템 수행평가를 위한 데이터마이닝 기술을 적용한 루브릭 자동제작 프로그램 설계 및 구현)

  • Gwon, Hyeong-Gyu;Jo, Mi-Heon;Lee, Eun-Jeong
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.1
    • /
    • pp.113-124
    • /
    • 2005
  • In this study, we designed and developed a tool to help teachers select and develop effective performance assessment criteria considering characteristics of individual learners. Using this tool, we can analyze preferences of teachers and characteristics of students for each rubric by exploring the classification and association rules through data mining. Those findings can give us guidelines and insights for the development and the selection of performance assessment criteria. The classification rules found are used for the learner-centered evaluation reflecting learners' interests, capabilities, and circumstances. Association rules found are utilized for analyzing teachers' preference, which enable to reduce time and efforts for the development and selection of rubric. Also, this tool supports creation, change, and selection of teachers' rubric linked with the performance assessment of NEIS(National Education Information System).

  • PDF

Feasibility of Automated Detection of Inter-fractional Deviation in Patient Positioning Using Structural Similarity Index: Preliminary Results (Structural Similarity Index 인자를 이용한 방사선 분할 조사간 환자 체위 변화의 자동화 검출능 평가: 초기 보고)

  • Youn, Hanbean;Jeon, Hosang;Lee, Jayeong;Lee, Juhye;Nam, Jiho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.258-266
    • /
    • 2015
  • The modern radiotherapy technique which delivers a large amount of dose to patients asks to confirm the positions of patients or tumors more accurately by using X-ray projection images of high-definition. However, a rapid increase in patient's exposure and image information for CT image acquisition may be additional burden on the patient. In this study, by introducing structural similarity (SSIM) index that can effectively extract the structural information of the image, we analyze the differences between daily acquired x-ray images of a patient to verify the accuracy of patient positioning. First, for simulating a moving target, the spherical computational phantoms changing the sizes and positions were created to acquire projected images. Differences between the images were automatically detected and analyzed by extracting their SSIM values. In addition, as a clinical test, differences between daily acquired x-ray images of a patient for 12 days were detected in the same way. As a result, we confirmed that the SSIM index was changed in the range of 0.85~1 (0.006~1 when a region of interest (ROI) was applied) as the sizes or positions of the phantom changed. The SSIM was more sensitive to the change of the phantom when the ROI was limited to the phantom itself. In the clinical test, the daily change of patient positions was 0.799~0.853 in SSIM values, those well described differences among images. Therefore, we expect that SSIM index can provide an objective and quantitative technique to verify the patient position using simple x-ray images, instead of time and cost intensive three-dimensional x-ray images.