• Title/Summary/Keyword: 관심영역 자동추출

Search Result 74, Processing Time 0.025 seconds

An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image (피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong;Kim, Hyung-Jun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2009
  • This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.

Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array (다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성)

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.281-288
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.

Automatic TFT-LCD Mura Defect Detection using Gabor Wavelet Transform and DCT (가버 웨이블렛 변환 및 DCT를 이용한 자동 TFT-LCD 패널 얼룩 검출)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.525-534
    • /
    • 2013
  • Recently, mura defect inspection techniques are receiving attention in LCD production procedure since demands of TFT-LCD are growing. In this paper, we propose an automatic mura defect inspection method using gabor wavelet transform and DCT. First, we generate a reference panel image using DCT based method. For original panel image and generated reference panel image, we apply a gabor wavelet transform to eliminate texture information in images. Then, we extract mura defect regions from the difference image between gabor wavelet transform image of original panel and generated reference panel image. Finally, all mura defect regions are quantified to detect accurate mura defects. Experimental results show that our method is more accurate and efficient than previous methods.

Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image (고해상도 위성영상의 객체기반 분석을 위한 영상 분할 기법 개발 및 평가)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.627-636
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation to consider spectral and spatial information of high resolution satellite image. Firstly, the initial seeds were automatically selected using local variation of multi-spectral edge information. After automatic selection of significant seeds, a segmentation was achieved by applying MSRG which determines the priority of region growing using information drawn from similarity between the extracted each seed and its neighboring points. In order to evaluate the performance of the proposed method, the results obtained using the proposed method were compared with the results obtained using conventional region growing and watershed method. The quantitative comparison was done using the unsupervised objective evaluation method and the object-based classification result. Experimental results demonstrated that the proposed method has good potential for application in the object-based analysis of high resolution satellite images.

Effective segmentation of non-rigid object in a still picture and video sequences (정지영상/동영상에서 non-rigid object의 효율적인 영역 분할 방식에 관한 연구)

  • Lee, In-Jae;Kim, Yong-Ho;Kim, Jung-Gyu;Lee, Myeong-Ho;An, Chi-Deuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.17-31
    • /
    • 2002
  • The new MPEG-4 video coding standard enables content-based functionalities. Image segmentation is an indispensable process for it. This paper addresses an effective segmentation of non-rigid objects. Non-rigid objects are deformable objects with fuzzy, blurred and indefinite boundaries. So it is difficult to segment deformable objects precisely. In order to solve this problem, we propose an effective segmentation of non-rigid objects using watershed algorithms in still pictures. And we propose an automatic segmentation through intra-frame and inter-frame segmentation process in video sequences. Automatic segmentation preforms boundary-based and region-based segmentation to extract precise object boundaries.

A Best View Selection Method in Videos of Interested Player Captured by Multiple Cameras (다중 카메라로 관심선수를 촬영한 동영상에서 베스트 뷰 추출방법)

  • Hong, Hotak;Um, Gimun;Nang, Jongho
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1319-1332
    • /
    • 2017
  • In recent years, the number of video cameras that are used to record and broadcast live sporting events has increased, and selecting the shots with the best view from multiple cameras has been an actively researched topic. Existing approaches have assumed that the background in video is fixed. However, this paper proposes a best view selection method for cases in which the background is not fixed. In our study, an athlete of interest was recorded in video during motion with multiple cameras. Then, each frame from all cameras is analyzed for establishing rules to select the best view. The frames were selected using our system and are compared with what human viewers have indicated as being the most desirable. For the evaluation, we asked each of 20 non-specialists to pick the best and worst views. The set of the best views that were selected the most coincided with 54.5% of the frame selection using our proposed method. On the other hand, the set of views most selected as worst through human selection coincided with 9% of best view shots selected using our method, demonstrating the efficacy of our proposed method.

Reproducing Summarized Video Contents based on Camera Framing and Focus

  • Hyung Lee;E-Jung Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.85-92
    • /
    • 2023
  • In this paper, we propose a method for automatically generating story-based abbreviated summaries from long-form dramas and movies. From the shooting stage, the basic premise was to compose a frame with illusion of depth considering the golden division as well as focus on the object of interest to focus the viewer's attention in terms of content delivery. To consider how to extract the appropriate frames for this purpose, we utilized elemental techniques that have been utilized in previous work on scene and shot detection, as well as work on identifying focus-related blur. After converting the videos shared on YouTube to frame-by-frame, we divided them into a entire frame and three partial regions for feature extraction, and calculated the results of applying Laplacian operator and FFT to each region to choose the FFT with relative consistency and robustness. By comparing the calculated values for the entire frame with the calculated values for the three regions, the target frames were selected based on the condition that relatively sharp regions could be identified. Based on the selected results, the final frames were extracted by combining the results of an offline change point detection method to ensure the continuity of the frames within the shot, and an edit decision list was constructed to produce an abbreviated summary of 62.77% of the footage with F1-Score of 75.9%

A GPU-based Filter Algorithm for Noise Improvement in Realtime Ultrasound Images (실시간 초음파 영상에서 노이즈 개선을 위한 GPU 기반의 필터 알고리즘)

  • Cho, Young-Bok;Woo, Sung-Hee
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The ultrasound image uses ultrasonic pulses to receive the reflected waves and construct an image necessary for diagnosis. At this time, when the signal becomes weak, noise is generated and a slight difference in brightness occurs. In addition, fluctuation of image due to breathing phenomenon, which is the characteristic of ultrasound image, and change of motion in real time occurs. Such a noise is difficult to recognize and diagnose visually in the analysis process. In this paper, morphological features are automatically extracted by using image processing technique on ultrasound acquired images. In this paper, we implemented a GPU - based fast filter using a cloud big data processing platform for image processing. In applying the GPU - based high - performance filter, the algorithm was run with performance 4.7 times faster than CPU - based and the PSNR was 37.2dB, which is very similar to the original.

Development of the Noise Elimination Algorithm of Stereo-Vision Images for 3D Terrain Modeling (지반형상 3차원 모델링을 위한 스테레오 비전 영상의 노이즈 제거 알고리즘 개발)

  • Yoo, Hyun-Seok;Kim, Young-Suk;Han, Seung-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • For developing an Automation equipment in construction, it is a key issue to develop 3D modeling technology which can be used for automatically recognizing environmental objects. Recently, for the development of "Intelligent Excavating System(IES), a research developing the real-time 3D terrain modeling technology has been implemented from 2006 in Korea and a stereo vision system is selected as the optimum technology. However, as a result of performance tests implemented in various earth moving environment, the 3D images obtained by stereo vision included considerable noise. Therefore, in this study, for getting rid of the noise which is necessarily generated in stereo image matching, the noise elimination algorithm of stereo-vision images for 3D terrain modeling was developed. The consequence of this study is expected to be applicable in developing an automation equipments which are used in field environment.

River monitoring using low-cost drone sensors (저가용 드론 센서를 활용한 하천 모니터링)

  • Lee, Geun Sang;Kim, Young Joo;Jung, Kwan Sue;Park, Bomi;Kim, Bo Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.346-346
    • /
    • 2020
  • 홍수기 효과적인 하천관리를 위해서는 광역 모니터링을 위한 기술 확보가 매우 중요하며, 최근 드론을 활용한 하천 모니터링에 관한 관심이 점차 증가되고 있다. 하천관리에 필요한 드론 탑재용 센서는 기본적으로 RGB 광학센서를 비롯하여 근적외선(Nir) 및 열적외선 센서가 함께 운용되는 것이 효과적이다. 그러나 현재 판매되는 드론 카메라를 살펴보면 근적외선과 열적외선 센서가 별도로 분리되어 있고 광학센서에 비해 상대적으로 매우 고가로 판매되고 있는 실정이다. 따라서 하천 모니터링을 위해서는 광학(RGB), 근적외선 그리고 열적외선 센서가 통합된 저가의 탑재체 개발이 시급하고 이를 활용한 하천 모니터링 프로세스를 정립할 필요가 있다. 본 연구에서는 일반 드론에 쉽게 탑재 가능한 하천 모니터링용 탑재체를 개발하였으며, 이를 기반으로 하천 홍수 및 부유사 모니터링에 활용하였다. 광학센서는 하천의 주요 형상을 확인하는데 이용하였으며, 근적외선 센서는 홍수 및 부유사 탐지에 활용하였다. 특히 본 연구에서는 비교적 넓은 하천 구역에 대한 공간정보를 구축하기 위해 75% 이상의 중복도를 가지고 촬영하도록 세팅하였으며 영상접합 SW를 활용하여 정사영상을 생성하였다. 구축한 근적외선 정사영상으로부터 영상분석 프로그램을 활용하여 홍수 및 부유사 영역을 추출하였으며 이를 통해 홍수기 하천 모니터링 및 치수 업무 의사결정을 위한 정보를 제공할 수 있었다. 저가용 드론 센서는 상용 SW와의 연계가 어렵기 때문에 자동비행 프로그램처럼 해당 위치별 영상 촬영이 어려운 한계가 있었으며, 본 연구에서는 센서의 제원특성을 활용하여 자동비행 SW에서도 일정 이상의 중복도를 확보할 수 있는 비행고도별 촬영시간 등을 종합적으로 설계하였다. 이를 통해 해당 지역에 대한 하천 모니터링용 정사영상을 구축할 수 있었으며 기존의 고가용 드론 센서와 유사한 효과를 가져올 수 있었다.

  • PDF