• Title/Summary/Keyword: 관심영역 자동추출

Search Result 74, Processing Time 0.024 seconds

Implementation of Clustered Microcalcification Computer Aided Detection System in Mammograms (맘모그램 영상에서의 군집화된 미세석회질 컴퓨터 보조 검출 시스템 구현)

  • Lee, Jung-Chel;Om, Kyong-Sik;Lee, Hyung-Ji;Park, Sang-Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.1-5
    • /
    • 2006
  • 본 논문에서는 유방암의 조기발견에 있어서 중요한 소견중 하나인 군집화된 미세석회질을 유방촬영 영상으로부터 자동으로 분석 및 검출하는 컴퓨터 보조 검출 시스템을 구현하였다. 전처리단계로서 유방영상에 메디안 필터를 사용하여 잡음을 제거하고, 히스토그램과 레이블링 연산을 수행하여 실제 유방영역만을 추출 하는 작업을 구현하였다. 그런 후에 추출된 실제 유방영역에서 LoG (Laplacian of Gaussian)연산을 수행하고 히스토그램을 분석하여 이진화를 수행한후에 후보점을 검출하였다. 마지막으로 이를 이용하여 영역확장 알고리즘을 수행하여 미세석회질의 후보영역을 검출한 후, 미세석회질간의 거리를 분석하여 최종 관심영역을 추출하였다. 데이터베이스는 총 20개의 MIAS Mini Database의 맘모그램 영상을 사용하였으며 실험결과 89%라는 검출 성능을 얻을 수 있었다.

  • PDF

An Automatic Region-of-Interest Extraction based on Wavelet on Low DOF Image (피사계 심도가 낯은 이미지에서 웨이블릿 기반의 자동 관심 영역 추출)

  • Park, Sun-Hwa;Kang, Ki-Jun;Seo, Yeong-Geon;Lee, Bu-Kweon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.215-218
    • /
    • 2009
  • 본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽 탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$ 또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하여 접근하며, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 기존 방법들의 문제점 이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산도를 상당히 개선시킬 수 있었다. 또한 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능 하였다.

  • PDF

Implementation of Image Enhancement by Region of Interest Modification and Backlight Compensation (관심영역수정 및 역광보정을 통한 이미지향상 구현)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.655-657
    • /
    • 2016
  • 우리는 빛의 정도에 따라 사진의 밝기와 채도, 대비를 보정하고 더 나아가 역광을 보정하는 기술을 구현하였다. 색감과 질감의 경우, 기존과는 다른 방법으로 질감과 색감을 추출했다. 역광보정은 자동이나 수동으로 할 수 있는데, 수동으로 역광보정을 적용하기 위해서는 먼저 관심영역을 지정해 주어야한다. 관심영역은 사진 속 원하는 부분의 윤곽선을 이어줌으로써 선택한다. 우리는 자석 올가미를 통하여 섬세한 선택을 가능하게 하였다. 기존 올가미 기능은 시작점과 끝점을 일치시켜 주어야 하는 단점이 있었으나 제안하는 올가미 기능은 시작점과 끝점을 일치시키지 않아도 관심영역을 선택할 수 있는 장점이 있다.

A Study on High-Speed Extraction of Bar Code Region for Parcel Automatic Identification (소포 자동식별을 위한 바코드 관심영역 고속 추출에 관한 연구)

  • Park, Moon-Sung;Kim, Jin-Suk;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.915-924
    • /
    • 2002
  • Conventional Systems for parcel sorting consist of two sequences as loading the parcel into conveyor belt system and post-code input. Using bar code information, the parcels to be recorded and managed are recognized. This paper describes a 32 $\times$ 32 sized mini-block inspection to extract bar code Region of Interest (ROI) from the line Charged Coupled Device (CCD) camera capturing image of moving parcel at 2m/sec speed. Firstly, the Min-Max distribution of the mini-block has been applied to discard the background of parcel and region of conveying belts from the image. Secondly, the diagonal inspection has been used for the extraction of letters and bar code region. Five horizontal line scanning detects the number of edges and sizes and ROI has been acquired from the detection. The wrong detected area has been deleted by the comparison of group size from labeling processes. To correct excluded bar code region in mini-block processes and for analysis of bar code information, the extracted ROI 8 boundary points and decline distribution have been used with central axis line adjustment. The ROI extraction and central axis creation have become enable within 60~80msec, and the accuracy has been accomplished over 99.44 percentage.

An Camera Information Detection Method for Dynamic Scene (Dynamic scene에 대한 카메라 정보 추출 기법)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.275-280
    • /
    • 2013
  • In this paper, a new stereo object extraction algorithm using a block-based MSE (mean square error) algorithm and the configuration parameters of a stereo camera is proposed. That is, by applying the SSD algorithm between the initial reference image and the next stereo input image, location coordinates of a target object in the right and left images are acquired and then with these values, the pan/tilt system is controlled. And using the moving angle of this pan/tilt system and the configulation parameters of the stereo camera system, the mask window size of a target object is adaptively determined. The newly segmented target image is used as a reference image in the next stage and it is automatically updated in the course of target tracking basing on the same procedure. Meanwhile, a target object is under tracking through continuously controlling the convergence and FOV by using the sequentiall extracted location coordinates of a moving target.

Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences (낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출)

  • Park, Jung-Woo;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.851-861
    • /
    • 2006
  • The paper proposes a novel unsupervised video object segmentation algorithm for image sequences with low depth-of-field (DOF), which is a popular photographic technique enabling to represent the intention of photographer by giving a clear focus only on an object-of-interest (OOI). The proposed algorithm largely consists of two modules. The first module automatically extracts OOIs from the first frame by separating sharply focused OOIs from other out-of-focused foreground or background objects. The second module tracks OOIs for the rest of the video sequence, aimed at running the system in real-time, or at least, semi-real-time. The experimental results indicate that the proposed algorithm provides an effective tool, which can be a basis of applications, such as video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing systems.

Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System (객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법)

  • Yu Hong-Yeon;Hong Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.529-541
    • /
    • 2006
  • In this paper, we propose a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the selected objects are continuously separated from the un selected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable and efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on this result, we have developed objects based video editing system with several convenient editing functions.

  • PDF

Automatic selection method of ROI(region of interest) using land cover spatial data (토지피복 공간정보를 활용한 자동 훈련지역 선택 기법)

  • Cho, Ki-Hwan;Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.171-183
    • /
    • 2018
  • Despite the rapid expansion of satellite images supply, the application of imagery is often restricted due to unautomated image processing. This paper presents the automated process for the selection of training areas which are essential to conducting supervised image classification. The training areas were selected based on the prior and cover information. After the selection, the training data were used to classify land cover in an urban area with the latest image and the classification accuracy was valuated. The automatic selection of training area was processed with following steps, 1) to redraw inner areas of prior land cover polygon with negative buffer (-15m) 2) to select the polygons with proper size of area ($2,000{\sim}200,000m^2$) 3) to calculate the mean and standard deviation of reflectance and NDVI of the polygons 4) to select the polygons having characteristic mean value of each land cover type with minimum standard deviation. The supervised image classification was conducted using the automatically selected training data with Sentinel-2 images in 2017. The accuracy of land cover classification was 86.9% ($\hat{K}=0.81$). The result shows that the process of automatic selection is effective in image processing and able to contribute to solving the bottleneck in the application of imagery.

Raising Visual Experience of Soccer Video for Mobile Viewers (이동형 단말기 사용자를 위한 축구경기 비디오의 시청경험 향상 방법)

  • Ahn, Il-Koo;Ko, Jae-Seung;Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.3
    • /
    • pp.165-178
    • /
    • 2007
  • The recent progress in multimedia signal processing and transmission technologies has contributed to the extensive use of multimedia devices to watch sports games with small LCD panel. However, the most of video sequences are captured for normal viewing on standard TV or HDTV, for cost reasons, merely resized and delivered without additional editing. This may give the small-display-viewers uncomfortable experiences in understanding what is happening in a scene. For instance, in a soccer video sequence taken by a long-shot camera techniques, the tiny objects (e.g., soccer ball and players) may not be clearly viewed on the small LCD panel. Moreover, it is also difficult to recognize the contents of the scorebox which contains the elapsed time and scores. This renuires intelligent display technique to provide small-display-viewers with better experience. To this end, one of the key technologies is to determine region of interest (ROI) and display the magnified ROI on the screen, where ROI is a part of the scene that viewers pay more attention to than other regions. Examples include a region surrounding a ball in long-shot and a scorebox located in the comer of each frame. In this paper, we propose a scheme for raising viewing experiences of multimedia mobile device users. Instead of taking generic approaches utilizing visually salient features for extraction of ROI in a scene, we take domain-specific approach to exploit unique attributes of the soccer video. The proposed scheme consists of two modules: ROI determination and scorebox extraction. The experimental results show that the proposed scheme offers useful tools for intelligent video display on multimedia mobile devices.

A Semantic Video Object Tracking Algorithm Using Contour Refinement (윤곽선 재조정을 통한 의미 있는 객체 추적 알고리즘)

  • Lim, Jung-Eun;Yi, Jae-Youn;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • This paper describes an algorithm for semantic video object tracking using semi automatic method. In the semi automatic method, a user specifies an object of interest at the first frame and then the specified object is to be tracked in the remaining frames. The proposed algorithm consists of three steps: object boundary projection, uncertain area extraction, and boundary refinement. The object boundary is projected from the previous frame to the current frame using the motion estimation. And uncertain areas are extracted via two modules: Me error-test and color similarity test. Then, from extracted uncertain areas, the exact object boundary is obtained by boundary refinement. The simulation results show that the proposed video object extraction method provides efficient tracking results for various video sequences compared to the previous methods.

  • PDF