Video objects of interest play an important role in representing the video content and are useful for improving the performance of video retrieval and compression. The objects of interest may be a main object in describing contents of a video shot or a core object that a video producer wants to represent in the video shot. We know that any object attracting one's eye much in the video shot may not be an object of interest and a non-moving object may be an object of interest as well as a moving one. However it is not easy to define an object of interest clearly, because procedural description of human interest is difficult. In this paper, a set of four filtering conditions for extracting moving objects of interest is suggested, which is defined by considering variation of location, size, and moving pattern of moving objects in a video shot. Non-moving objects of interest are also defined as another set of four extracting conditions that are related to saliency of color/texture, location, size, and occurrence frequency of static objects in a video shot. On a test with 50 video shots, the segmentation method based on the two sets of conditions could extract the moving and non-moving objects of interest chosen manually on accuracy of 84%.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.550-552
/
2001
디지털 TV가 실용화 됨에 따라 다양한 부가정보 서비스가 가능하게 되었다. 그러나 부가정보서비스를 효과적으로 사용하기 위해서는 전통적인 메뉴검색에 의한 관심객체의 부가정보 검색이 아닌 화면에서의 관심객체 선택만으로 부가정보를 표현할 수 있는 방법이 필요하다. 따라서 본 논문에서는 메뉴검색없이 마우스 클릭만으로 관심 객체를 선택하고 선택된 객체에 대해 부가정보를 표현하는 시스템을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.625-627
/
2002
본 논문에서는 질의 영상으로 주어지는 컬러 영상에서 관심있는 객체를 추출한 후 Dominant 컬러쌍 정보를 이용하여 객체정보만을 질의하는 객체기반 영상검색 기법을 제안한다. 기존의 대부분 연구에서는 관심있는 객체정보를 포함하는 영상 전체에 대한 특징값을 추출하여 유사 영상을 검색함으로써 배경으로 인해 검색 성능이 나빠지는 결과가 나타난다. 그러므로, 본 논문에서는 관심있는 객체 정보만을 질의로 사용하고 DB내의 영상들에 대해서도 객체가 존재할 수 있는 후보 영역을 추출한 추 유사도를 측정하는 방법을 제안한다
Journal of the Korea Society of Computer and Information
/
v.13
no.2
/
pp.87-94
/
2008
In this paper, an extraction method of objects of interest in the color images is proposed. It is possible to extract objects of interest from a complex background without any prior-knowledge based on the proposed method. For object extraction, Gator images that contain information of object location, are created by using Gator filter. Based on the images the initial location of attention windows is determined, from which image features are selected to extract objects. To extract object, I modify the previous method partially and apply the modified method. To evaluate the performance of propsed method, precision, recall and F-measure are calculated between the extraction results from propsed method and manually extracted results. I verify the performance of the proposed methods based on these accuracies. Also through comparison of the results with the existing method, I verily the superiority of the proposed method over the existing method.
Proceedings of the Korea Information Processing Society Conference
/
2010.04a
/
pp.478-481
/
2010
컴퓨터 비전에서 객체의 인식, 추적에 앞서 배경으로부터 전경을 분리하는 배경차감 기법과 분리된 전경에 대한 관심 영역(ROI)을 추출하는 것은 일반적인 방법이다. 하지만 전경을 정확히 분리하지 못하면 개별 객체의 관심영역(ROI) 역시 잘못 추출되는 문제가 발생된다. 본 논문에서는 정확하지 않은 전경 분리로 부터 발생되는 개별 객체에 대한 분산된 관심영역을 병합하는 방법을 제안한다. 본 방법은 배경과 분리된 전경에서 한 객체의 일정 거리 이내에 있는 다른 객체를 가상으로 병합하는 단계, 워터쉐드 분할 알고리즘을 적용하는 단계를 거쳐 다시 블럽 레이블링을 수행한다. 제안 방법을 통하여 배경 모델에서 분리된 개별 객체의 병합된 관심영역을 제공한다. 실험에서 기존의 일반적인 블럽 레이블링 방법만을 적용하여 추출한 전경영역과 제안하는 방법에 의한 전경영역을 비교하여 배경 모델에서 분리된 개별 객체의 관심영역이 효과적으로 추출되는 것을 보인다.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.5
/
pp.137-151
/
2014
This paper proposes a method of detecting object of interest(OOI) in general natural images. OOI is subjectively estimated by human in images. The vision of human, in general, might focus on OOI. As the first step for automatic detection of OOI, candidate regions of OOI are detected by using a saliency map based on the human visual perception. A saliency map locates an approximate OOI, but there is a problem that they are not accurately segmented. In order to address this problem, in the second step, an exact object region is automatically detected by combining graph-based image segmentation and skeletonization. In this paper, we calculate the precision, recall and accuracy to compare the performance of the proposed method to existing methods. In experimental results, the proposed method has achieved better performance than existing methods by reducing the problems such as under detection and over detection.
In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.
In this paper, we propose a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the selected objects are continuously separated from the un selected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable and efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on this result, we have developed objects based video editing system with several convenient editing functions.
본 논문에서는 추적하고자 하는 관심객체를 일정한 크기의 블록으로 나누어 각 블록이 독립적으로 추적을 수행한다. 나누어진 각 블록들은 NCC(Normalized Cross Correlation)를 사용하여 통계적인 특성을 고려하여 움직임을 추정한다. 추정된 블록들의 움직임 벡터 중 평한 벡터보다 일정 값 이상 큰 블록은 관심객체 움직임 벡터 추정 시 제외시킴으로써 잘못된 추정으로 인한 에러를 줄인다. 선택된 블록들의 추정 에러값에 따라 추정값이 높은 블록의 움직임 벡터는 높은 가중치를 적용하고 추정값이 낮은 블록의 움직임 벡터는 낮은 가중치를 적용하여 추적 신뢰도를 높였다. 실험결과, 제안된 알고리즘은 강건한 실시간 추적이 가능함을 보여준다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.462-464
/
2012
이미지를 입력으로 사용하는 다양한 응용 분야에서, 이미지에 포함되어 있는 객체의 의미를 이해하는것은 매우 중요하다. 이미지에 포함된 객체의 인식을 위해 우선적으로 관심 영역을 추출하는 경우, 인식하고자 하는 대상의 특징에 대한 사전 지식이나 입력된 이미지에서의 위치, 색, 그리고 크기 정보를 이용하는 것이 일반적이다. 그러나 이미지로부터 사전 지식이 전무한 불특정 다수의 객체에 대한 의미를 추론해야 하거나 그로부터 정보를 수집해야 하는 경우, 이러한 관심 영역 추출 방법은 효과적이지 않다. 본 논문에서는 이를 위해 컬러 이미지를 입력으로 사용하는 응용에서 이미지의 양자화 된 색 정보와 다중 저해상도 정보만을 이용하여 관심 객체가 될 가능성이 있는 후보 관심 영역들을 포함하는 최소 장방형 영역들을 구조적 정보와 함께 추출할 수 있는 방법을 제안한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.