• Title/Summary/Keyword: 관수제어

Search Result 34, Processing Time 0.035 seconds

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.

Effects of Spray Times and Ventilation Method on the Seedling Growth of Fruit Vegetables (관수회수 및 송풍처리가 과채류의 묘 생장에 미치는 영향)

  • Kim Chang-Soo;Min Byeong-Ro;Kim Wong;Kim Dong-Woo;Seo Kwang-Wook;Lee Beom-Seon;Lee Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • A multipurpose operating system was developed to adjust both spray times and ventilation method without a configuration of the moving path and the type of the greenhouse. The multipurpose working system proved to be a reliable system for testing the growth quality of the fruit vegetables in the greenhouse. The results are as follows. The first leaf, diameter of a stem, leaf area, and average stem diameter in the Cucumber seedling growth were repressed by high-speed ventilation, but was not repressed by spray times. The first leaf in the Tomato seedling growth was repressed as ventilation velocity was high, but the average stem diameter was not repressed. While the Tomato was given water three times a day, the diameter of a stem and the leaf area were increased as ventilation speed became higher. However, those were different other factors. The Tomato leaf area was larger when given water twice a day than that in hand spray, but showed no difference with ventilation speed. The first leaf, the diameter of a stem and the leaf area of a Red pepper were lower in automatic spraying with ventilation than those in hand spray.

Control of Daily First Drainage Time by Irrigation Management with Drainage Level Sensor in Tomato Perlite Bag Culture (배액전극제어법에 의한 토마토 펄라이트 자루재배시 일중 첫 배액 제어)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.409-414
    • /
    • 2010
  • The first drainage time in a day was controlled for precise irrigation management with low consumption of nutrient solution in tomato perlite bag culture system by measuring water level of drained water in drainage catchment part. This method automatically adjusted the irrigation time under any condition of light, temperature and humidity, resulting in stable water content in substrates. However, it was difficult to keep the time consistent as they were set. It drained with the deviation of 20 min in the treatment in which the first drainage time was set at 10:00 and 50 min in the treatment set at 10:30. The first drainage time was not constant, but the drain occurred stably before noon in the treatment of which irrigation frequency was longer than 30 min. The drainage ratio was better balanced in all the treatments using drainage level sensors than the treatment using time clock for irrigation control. High water and fertilizer efficiencies were obtained. Although the growth, total yield and sugar content were not significantly different between the treatments, fruit weight was higher in the treatments using drainage level sensors than that using timer.

Development of a Linear Chemigation System (II) - Measurement and Control System (가로주행식 케미게이션 시스템의 개발 (II) - 계측 및 제어 시스템)

  • 배영환;구영모;박금주
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.07a
    • /
    • pp.34-39
    • /
    • 1999
  • 케미게이션 시스템은 이동식 또는 정치식 관개시설에 방제와 시비 장치를 부가하여 통합 운영함으로써 작업의 생력화, 비용의 절감 및 환경 오염의 방지를 도모하기 위하여 개발된 것으로서, 주로 대단위 농지를 운영하는 미주, 호주, 중동 지역에서 활용되고 있다. 우리나라에서는 최근 과수원을 중심으로 정치식 무인방제기가 개발ㆍ보급되어 관수와 방제 작업에 이용되고 있다. (중략)

  • PDF

마이크로프로세서를 응용한 식물재배용 관수 광량 제어장치

  • Kim, Jong-Man;Kim, Yeong-Min;Kim, Won-Seop;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.4-4
    • /
    • 2010
  • Multi Cultivation Remote-control System(MCRS) for crops through characteristics of multi-safe sensors was realized. It was carried out to investigate into the effect of LED Control with the physiological activity of crops(for examples, sprouts). We have also composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. And we producted the remote control as using Linux.

  • PDF

Design of Integrated Control System for Combustion Type CO2 Generator with Solar Radiation Sensitiveness and Irrigation Supply (일사량 감응 및 관수공급이 가능한 연소형 CO2 발생기 통합 제어시스템의 설계)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.617-622
    • /
    • 2018
  • Simultaneous control of blowers and heat exchangers affecting the air sealing and flow conditions inside the green house is essential to the management of $CO_2$ concentration. Currently, the demand for automation systems and integrated control is steadily increasing according to increasing of farm areas per person due to the reduction of agricultural population. This paper proposes the integrated control system that can control simultaneously the existing devices such as measurement switching devices which are important variables in the supply of $CO_2$, $CO_2$ generator fuel and combustion air mixture ratio(air-to-fuel ratio), and $CO_2$ supply control under internal and external conditions.

Development of a Control Algorithm for Automatic Ventilation (환기창 자동제어용 제어 알고리즘 개발)

  • 박규식;이기명
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 1997
  • Environmental control operations have been considerably contributed to the reduction of labor cost in both plastic film and glass greenhouses since government supported projects were begun. However, some problems are still remaining on the optimal environmental control and excessive operation due to an inflexible software regulating ventilation gear - reducers. The unadjustable software caused the damage of ventilation system, resulting in heat stresses of crops. This study was performed to develop a ventilation software controlling the vent opening level, opening sequence, based on the wind direction, and control interval according to the difference between ambient and set- up temperatures. The software included a beeper system alarming urgent cases, while a manager was remote from the greenhouse. A compatible hardware with the software was also developed by using a low-cost diffused DSP controller.

  • PDF

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Actual State of Structures and Environmental Control Facilities for Tomato Greenhouses in Chungnam Region (충남지역 토마토 재배온실의 구조와 환경조절설비 실태분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.73-85
    • /
    • 2009
  • An investigation was conducted to get the basic data for establishing structural safety and environmental management of tomato greenhouses in Chungnam region. The contents of the investigation consisted of actual state of greenhouse structures and environmental control facilities. Most of greenhouses were arch type single-span plastic houses and they had too low height for growing tomatoes. Frameworks of multi-span greenhouses were suitable, but those of single-span were mostly insufficient. Every greenhouse had thermal curtain movable or covering fixed inside the greenhouse for energy saving, and heating facilities were mostly warm air heater. Irrigation facilities were mostly drip tube and controlled by manual operation or timer. Almost all of the greenhouses didn't install high level of environmental control facilities such as ventilator, air circulation fan, $CO_2$ fertilizer, insect screen, supplemental light, and cooling device.

  • PDF