• Title/Summary/Keyword: 관성질량

Search Result 98, Processing Time 0.025 seconds

압전형 가속도계의 설계, 제작 및 보정 I

  • 이종원;구경회
    • Journal of the KSME
    • /
    • v.29 no.2
    • /
    • pp.175-183
    • /
    • 1989
  • 오늘날 널리 연구되고 있고 공학자들에게 많은 관심을 끌고있는 압전 세라믹(ceramic)을 이용 하여 자연계에서 일어나는 각종 진동현상을 측정하고 해석하기 위한 센서(sensor)의 설계, 제작은 이미 선진국에서도 보편화된지 오래이다. 특히 압전형 가속도계(piezo type accelerometer)는 진동의 절대 측정에 가장 유용한 센서로 널리 알려져 있다. (1) 아주 넓은 사용 주파수 범위 (2) 넓은 동적범위(dynamic range)에 걸친 뛰어난 선형성(linearity) (3) 측정된 가속도 신호를 전기적으로 적분하여 속도와 변위에 대한 자료 제공 용이 (4) 높은 정확성 (5) 자발 전(self-generating)이므로 외부 전원 공급이 불필요 (6) 수명과 뛰어난 내구성 (7) 작은 크기와 가벼운 무게 등이다. 현재 기계 구조물 진동 측정에 이용되고 있는 스트레인 게이지 형(strain gage-type)의 가속도계는 감도가 좋고 저주파 진동 측정에는 편리한 반면 충격이나 높은 주파수 전동 측정에는 적합하지 않으며 내부 구조가 다소 복잡하다(2). 반면에 압전형 가 속도계는 압전 소자와 관성 질량의 조합 설계로서 저주파 진동 측정에 적합한 고감도의 가속도 계와, 감도는 떨어지나 아주 높은 주파수 범위의 진동까지 측정이 가능한 가속도계를 손쉽게 설계, 제작할 수 있다. 본 글에서는 선진국에 비해 낙후된 국내의 센서 설계, 제작 기술을 고 양시키고자 최근 한국과학기술원에서 시도된 압전형 가속도계의 개발 연구 사례를 중심으로 설계 및 제작시 고려 사항과 보정 문제를 소개하고자 한다.

  • PDF

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

Performance Characteristics of Interference-Type Floating Breakwaters with Various two-dimensional Sectional Shapes (간섭식 부방파제의 2차원 단면형상 소파성능)

  • Song, Mu-Seok;Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • The characteristics of the floating breakwater is briefly reviewed and their performance is numerically investigated. The numerical scheme is a boundary integral method for inviscid potential flows, and various two-dimensional floating breakwater modules are studied focusing on the transmission coefficient. The general characteristics of pontoons is studied as function of mooring line stiffness, mass moment inertia and draft. Trapezoidal-, hat- and table-shape cross-sections are also studied with varying shape-parameters. The efficiency varies with changes in each shape-parameter and for some cases satisfying tranquility can be expected with even longer waves.

  • PDF

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF

Dynamic Response and Control of Airship with Gust (외란이 작용하는 비행선의 동적 반응 및 제어)

  • Woo, G.A.;Park, I.H.;Oh, S.J.;Cho, K.R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.69-77
    • /
    • 2002
  • To acquire the dynamic response and design the controller of the airship, the longitudinal motion of the airship with respect to the vertical gust, which is the nonlinear system, was studied. The effects of the apparent mass and moment of the airship delay the dynamic response and the settling time, which are slower than those of conventional airplanes. The current object of the airship is designed to cruise at 500~1000m altitude. At that height, the atmospheric conditions are generally unstable by wind gust. In this paper, it has been studied for the case of vertical gust, since the apparent mass effects are dominant in has been studied for the case of vertical gust, since the apparent mass effects are dominant in that plane. In addition to the study of the dynamic responses of the airship, the controller was designed using the PID-controller. When the gust was applied, airship responses were recovered of equilibrium states. However, it takes too ling time for recovery and the speed of airship is reduced. So, the aim in this paper was to fasten the recovery speed and to get back the cruising velocity. The control parameters were determined from the stability mode analysis, and the control inputs were the thrust and the elevator deflection angle.

Free Vibration Analysis of a Degenerated Timoshenko Beam Including the Effect of Shear Deformation and Rotatory Inertia (전단변형(剪斷變形)과 회전관성(回轉慣性)을 고려(考慮)한 Timoshenko 보의 자유진동(自由振動) 해석(解析))

  • Byun, Dong Kyun;Shin, Young Shik;Jang, Jong Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.109-122
    • /
    • 1983
  • An accurate thick beam element (TB4) which includes the effects of the shear deformation and rotatory inertia has been degenerated from the three dimensional continuum by employing the Timoshenko beam assumptions. The proposed TB4 element has four nodes and two degrees of freedom at each node, totally eight degrees of freedom. The transverse deflection W and plane rotation ${\theta}$ with the cubic interpolation functions are selected as nodal variables. The element characteristics are formulated by discretizing the beam equations of motion, using the Galerkin weighted residual method, and are numerically integrated by the reduced shear integration technique, using the three-point Gauss quadrature with the various shear coefficients. Several numerical examples are analyzed to demonstrate the accuracy and the monotonic convergence behavior of the proposed TB4 beam element. The result indicates that the TB4 element shows the more excellent performance and the monotonic convergence behavior than the other existing Timoshenko beam type elements for the whole range of the beam aspect ratios, in both static and free vibration analyses.

  • PDF

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

Semi-analytical Annular Mindlin Plate Element for Out-of-plane Vibration Analysis of Thick Disks (두꺼운 디스크의 면외 진동 해석을 위한 준-해석적 환상 민드린 평판 요소)

  • Kim, Chang-Boo;Cho, Hyeon Seok;Beom, Hyeon Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.588-596
    • /
    • 2012
  • This paper presents a new semi-analytical annular Mindlin plate element with which out-of-plane natural vibration of thick disks can be analyzed simply, efficiently, and accurately through FEM by including effects of rotary inertia and transverse shear deformation. Using static deformation modes which are exact solutions of equilibrium equations of annular Mindlin plate, the element interpolation functions, stiffness and mass matrices corresponding to each number of nodal diameters are derived. The element is capable of representing out-of-plane rigid-body motions exactly and free from shear locking. Natural frequencies of uniform and multi-step disks with or without concentric ring support are analyzed by applying the presented element. Such results are compared with theoretical predictions of previous works or FEA results obtained by using two-dimensional shell element to investigate the convergence and accuracy of the presented element.

Characterization and Solution Behavior of Polyethylene-based Ionomer Particles in Water (물에서의 폴리에틸렌계 아이오노머 입자 특성과 용액 거동)

  • Yeo, Sang Ihn;Woo, Kyu Whan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.512-518
    • /
    • 1998
  • In this study, various thermodynamic and hydrodynamic parameters characterizing the solution properties of polyethylene ionomer particles in water were determined at $30^{\circ}C$ by means of light scattering and viscosity measurements. Based on the experimental data, we investigated the solution behavior of three kinds of polyethylene ionomers, which are different in composition of the pendant ionic groups of COOK, COOH and $CONH_{2}$, and characterized their particle properties. Ionomers containing 7.6 mol% potassium salt only behave as flexible coils in a relatively good solvent state. On the other hand, two ionomers containing 3.8 mol% amide group together with potassium salt form the compact particles. In addition, the concentration dependence of the effective diffusion coefficient $(D_{eff})$ and the reduced viscosity of the latter ionomers showed the opposite trend from the former, indicating that the composition of the pendant ionic groups have a great influence on the interparticle interaction of ionomers formed in water.

  • PDF