• Title/Summary/Keyword: 관군

Search Result 90, Processing Time 0.03 seconds

A Study on Formation of Slurry Ice by using the Reversing Flow in a Bundle of Tube (역전 유동층을 이용한 관군 내에서의 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.365-370
    • /
    • 2011
  • The ice-thermal energy storage cooling system has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type system is one kind of ice-thermal storage cooling system utilizing cheaper off-peak electricity. This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by using reversing flow, which is putting reversing material into test section to disturb ice adhesion. At this experiment, poly propylene ball of dimeter 10 mm was used as reversing material, and ethylene glycol-water solution of 20wt% concentration was used as flow material. The experimental apparatus was constructed of the slurry ice making and storage tank(test section), the brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.

A Study on Heat Transfer and Pressure Drop Characteristics of Staggered Tube Banks using CFD Analysis (CFD해석을 통한 엇갈린형 관군의 열전달 및 압력강하 특성에 관한 연구)

  • Zhao, Liu;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2985-2992
    • /
    • 2015
  • In this study, the characteristics of heat transfer and pressure drop was theoretically analyzed by changing longitudinal pitch, bump phase, location of vortex generator about the staggered tube banks by applying SST (Shear Stress Transport) turbulence model of ANSYS FLUENT v.14. Before carrying out CFD (Computational Fluid Dynamics) analysis, It is presumed that the boundary condition is the tube surface temperature of 363 K, the inlet air temperature of 313 K and the inlet air velocity of 5-10 m/s. The results indicated that the heat transfer coefficient is not affected by the longitudinal pitch and the bump phase of circle type was more appropriate than serrated type in the characteristics of heat transfer and pressure drop. Additionally, in case of vortex generator location, the heat transfer characteristics showed that forward location of tube was more favorable 4.6% than backward location.

Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes (가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

An Experimental Study on Heat Storage and Heat Recovery Characteristics of a Latent Heat Storage Tank with Horizontal Shell and Tube Type (수평식 셸-튜브형 잠열축열조의 축열 및 방열특성에 관한 실험적 연구)

  • Kwon, Young-Man;Seo, Hye-Sung;Moh, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat exchanger consisted of horizontal cylindrical capsules with a staggered tube bank layout. Based on the obtained data, the effects of flow rate and inlet fluid temperature on the melting time and heat storage rates were examined. It is found that the melting time decreased with increase of the flow rate and the inlet temperature. Results also show that at the initial stage of heat transfer the heat storage rate represents the maximum value and rapidly decreases.

HEAT TRANSFER ON THE COMBUSTION CHAMBER OF A WATER TUBE TYPE BOILER WITH MULTIPLE BURNERS (다중 버너를 채택한 수관식 산업용 보일러 연소실의 열전달 특성)

  • Ahn, J.;Hwang, S.;Kim, J.J.;Kang, S.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.335-340
    • /
    • 2009
  • Operating medium or large scale industrial boilers in partial load condition, the burner should undergo the off-design points resulting in poor exhaust gas characteristics. To obtain the stable turn down performance, two or more burners can be used for the industrial boiler. In case multiple burners are adopted, the heat transfer can be enhanced by arranging the burners properly. In the present study, numerical simulations have been conducted for the combustion chamber of a 2 t/h class industrial boiler in order to clarify the heat transfer characteristics at the combustion chamber.

  • PDF

A numerical study of turbulent flows with adverse pressure gradient (역압력 구배가 있는 난류유동에 대한 수치적 연구)

  • 김형수;정태선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.668-676
    • /
    • 1991
  • Turbulent flows around tube banks and in the diffuser were studied using a non-orthogonal boundary fitted coordinate system and the modified K-.epsilon. turbulence model. In these cases, many problems emerge which stem from the geometrical complexity of the flow domain and the physical complexity of turbulent flow itself. To treat the complex geometry, governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. The modified K-.epsilon. model of Hanjalic and Launer was applied to solve above two cases under the condition of strong and mild pressure gradient. The results using the modified K-.epsilon. model results in both test cases.

Study on frost Generation and Defrosting Mechanism on Evaporating Tubes for Refrigerator and Air condition industries (냉동공조용 관군에서의 서리발생 및 제상 메커니즘에 관한 연구)

  • Jee, Jae-Hoon;Kim, Chang-Bok;Mun, Sung-Bae;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.234-235
    • /
    • 2005
  • In this experiment study, to acquire elementary data for explaining to generate frost layer in the fin - tube evaporator. the experiment condition is to supply air on 0.3m/s, 0.6m/s, 0.9m/s and inlet air temperature is 15$^{circ}C$, 20$^{circ}C$, 25$^{circ}C$ , supplied air relative humidity is 70%, 80, 90%. And brine temperature in the copper tube was kept -15$^{circ}C$ because, generally cooling temperature range is constantly -15$^{circ}C$ in the heat exchanger for air conditioning system. in conclusion, through this experiment, we did compare with frost layer and frost thickness in each condition and examine these data

  • PDF

Heat Transfer and Pressure Drop Characteristics for Various Tube Geometries in Modular Tube Bundle Heat Exchanger (모듈형 관군 열교환기에서의 관 형상에 따른 열전달 및 압력강하 특성에 관한 연구)

  • Yoon, Joon-Shik;Park, Byung-Kyu;Kim, Cham-Jung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.105-111
    • /
    • 2000
  • A numerical study has been performed to obtain the heat transfer and pressure drop characteristics for shell-and-tube heat exchanger with various shapes of tubes. The Tubes have variation of Aspect Ratio, Pitch and Rotation. Results are presented as plots of Colburn j factor and friction factor f against Aspect Ratio, Pitch and Rotation. As Aspect Ratio increases, j factor and f factor decreases. As Pitch increases, j factor decreases. j/f have optimized Pitch for each Aspect Ratio. Accordingly, there is fitness of Aspect Ratio and Pitch fur most effective cases. The Rotation of tubes are of no meaning for both heat transfer and pressure drop.

  • PDF

Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes (수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF

Numerical Simulation of Heat Transfer Characteristics of Tube Banks with Non-conventional Arrangement (튜브뱅크 배열특성에 따른 전열특성변화 수치모사)

  • Jun, Yong-Du;Nam, Myong-Hwan;Koo, Byeong-Soo;Lee, Kum-Bae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1129-1134
    • /
    • 2009
  • A numerical study has been conducted to investigate the effect of tube arrangement on the heat transfer and the pressure loss for cross flow heat exchangers. By defining a transverse deviation factor, ${\varepsilon}_t=l_T/S_T$, the flow pattern and the heat transfer characteristics are compared for selected ${\varepsilon}_t$ values of 0.0(in-lined), 0.1, 0.2, 0.3, 0.4, 0.5(staggered) by using a commercial software. Computational domain includes 1 pitch in the transverse direction and 5 pitches in the flow direction with due periodic boundary conditions.

  • PDF