최근 ADCP 등 첨단장비를 활용한 유량 및 하상측정, 각종 하천기본계획 수립 시 확보되는 횡단측정 자료, 식생 및 서식처 등 하천환경과 생태자료, 드론 등을 활용한 영상자료 등 방대한 하천 정보가 확보되고 있으며, 다기능보 등 다양한 하천구조물 및 친수구역이 증가하는 등 이전과 비교하여 괄목할만한 수준으로 정보의 양이 증가하고 있다. 이에 따라 다양한 하천정보를 체계적으로 저장, 관리, 공유하기 위하여 표준화된 데이터 모델(Data Model)의 수립이 필요하다. 하천 정보의 경우 하천 시설물, 하천 단면측량 자료, 하천 시계열 측정 자료 등이 특정 하천을 중심으로 관리되는 반면, 기존 데이터 모델 연구에서는 특정 주제도에 기반하여 하천 정보가 레이어 형식으로 제공되어 상호 연계되지 않아 하천 정보의 효율적 관리측면에서 적합하지 않았다. 또한 신규 정보를 추가 시 기존 데이터 모델의 과다한 수정이 필요하고, 기존의 데이터 모델의 경우 표준화되지 않아 활용성이 매우 낮고, 유역중심으로 구성되어 특정 조건에 해당되는 하천 정보 검색이 어려운 단점이 존재하였다. 본 연구에서는 기존의 주제도 및 레이어 형식으로 구성되어 있던 데이터 모델 형식에서 벗어나 하천흐름선을 기준으로 데이터모델을 구축하는 방안을 제시하였으며, 하천흐름선과 하천 시설물, 단면 측량 자료, 계측 자료를 순차적으로 수용하고, 기존에 존재하지 않던 하천 정보의 추가 시 기존 데이터 모델의 형식을 수정하지 않고 유연하게 대응할 수 있는 관계형 데이터 모델을 구상하였다. 또한, 하천과 유역의 논리적 저장방안 고려하여 한 개의 하천을 다수의 세그먼트(Reach)로 구분하여 코드(Reach Code)를 부여하는 방안을 제시하였으며, 구상한 데이터모델을 통하여 국가하천과 지방하천 등 유역의 다양성을 포함하는 한강권역의 섬강유역을 시범하천으로 구축하였다. 제시된 하천 정보 데이터 모델을 활용하여 DB를 구축한다면 하천망을 기준으로 하천 정보가 저장되고, 기존의 유역단위의 하천 정보 제공 방식에서 하천과 유역을 모두 포함하여 검색 가능한 시스템을 구축하여 하천 정보의 관리와 제공이 수월해질 것으로 기대된다.
양식장에서 최적의 생육환경을 유지할 수 있는 제어시스템 개발을 위해 수질에 영향을 미치는 요인들의 상관관계 분석을 위한 머신러닝 모델을 개발하고자 한다. 데이터간의 상관관계 분석 및 예측모델 생성을 위해 알고리즘의 결정계수와 MSE, RMSE 등의 수치를 통하여 데이터의 적합성을 검증하고자 한다.
최근 DNA 칩 또는 마이크로어레이 기술의 발전으로 인해 한 세포 내의 수천 개의 유전자의 발현 정도를 동시에 측정할 수 있게 되었다. 이러한 마이크로어레이 데이터를 분석해서 암의 경과나 세포의 주기적 변화 등에 영향을 미치는 유전자들을 알아낼 수 있다. 본 논문에서는 베이지안망을 이용해서 마이크로어레이 데이터를 분석, 백혈병의 경과를 예측한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 각 유전자들간의 확률적 관계를 표현하는 그래프 모델로 각 유전자들간의 확률적 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 마이크로어레이 데이터에 대해서 학습된 베이지안망은 백혈병 경과 예측에 대해서 기존의 방법보다 뛰어난 성능을 보였다.
퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 본 논문에서는 비선형 시스템의 퍼지모델을 위해 정보 granules에 의한 퍼지 관계 기반 퍼지 추론 시스템을 최적 설계한다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCtl 클러스터링 방법에 의한 중심값을 이용하여 모든 입력변수가 상호 관계한 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되고 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 그리고 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀하며, 기존 문헌과의 성능비교를 통해 제안된 퍼지 모델을 평가한다.
본 연구는 사용자가 특정 전문지식에 대하여 검색하는데 있어 관계형 데이터베이스와 온톨로지를 결합해 보다 적합한 검색 결과를 반환하도록 하는 관계형 데이터베이스와 온톨로지 병행모델에 관한 것이다. 데이터나 정보 양의 급격한 증가는 검색 결과의 사용자 확신을 도리어 떨어트리는 big data 문제에 부딪히게 되었으며 모바일 기기의 사용 증가는 검색과 결과의 판단에 있어 인간의 관여를 줄이는 단순성을 높이는 것이 강조되고 있다. 따라서 본 연구는 고수준의 의사결정이 요구되는 분야에 있어서의 검색 성능을 높이기 위해 관계형 데이터베이스로 구성된 데이터에 온톨로지를 결합시켜 사용자에게 적합한 데이터를 반환할 수 있는 모델에 대해 지원해보고자 한다. 본 연구의 검증을 위해 전문 지식이 요구되는 의약품 분야의 데이터베이스를 기준으로 서비스를 제공하는 사이트에서의 검색을 통해 문제점을 제시하고 연구의 필요성을 제시한다.
응용 환경에서 동시에 이종의 모델을 지원하는 다수의 데이터베이스에 대하여 이들을 동시에 사용하거나 서로 간의 데이터 이전을 위해서는 스키마 변환과 질의 변환이 필요하다. 본 논문에서는 이종 모델 데이터베이스간의 상호 질의를 위해, 1) 관계형 스키마를 객체지향 스키마로 변환하고, 2) 관계 데이터베이스의 데이터를 객체 데이터베이스로 이전하며, 3)사용자의 관계형 질의를 객체 데이터베이스에서 인식할 수 있도록 변환하는 수행하는 중개자(Mediator)의 설계에 대해 기술한다. 제안된 중개자는 관계형 SQL 질의를 받아서, 데이터의 위치에 다랄 적절한 질의로 변환한 후, 관계 데이터베이스와 객체 데이터베이스에 있는 데이터를 자동으로 처리한다. 결과적으로, 중개자는 서로 다른 데이터베이스를 동시에 사용할 수 있는 기초가 될 것이다.
GIS 분야에서 다루는 공간 데이터는 대부분 2차원의 데이터이다. 현실 공간에 존재하는 3차원 객체의 2차원 정보만을 취하거나 혹은 2차원 공간으로 투영하는 등의 방법으로 데이터를 저장한다. 이러한 방법은 정보의 손실로 인한 데이터 활용범위가 축소되고, 현실 공간을 정확하게 반영하지 못하는 문제가 있다. 최근 3차원 공간 데이터를 저장, 관리 가능한 DBMS가 개발되고, 3차원 데이터에 대한 관심과 요구가 높아지고 있다. 하지만 이들은 단순히 3차원 공간의 데이터를 저장만 가능할 뿐 공간 데이터베이스 관리 시스템의 핵심이라 할 수 있는 공간 질의가 불가능하다. 또한 이에 대한 연구가 미흡한 실정이다. 본 연구에서는 3차원 공간 모델을 이용하여 공간 데이터베이스 표준에서 정의하고 있는 공간 관계 연산을 설계하였다. 공간 데이터 모델로는 OGC에서 제시한 GML3에서 정의하는 모델을 사용하였고, 공간 관계 연산에 대한 설계 도구로는 공간 관계를 연산하는데 가장 좋은 방법으로 알려진 Point-Set Topology 기반의 DE-9IM을 이용하였다.
본 논문에서는 서술형 수학 문제 풀이 모델의 숫자 대소관계 파악을 위한 명시적 자질추출방식 Explicit Feature Extraction(EFE) Reasoner 모델을 제안한다. 서술형 수학 문제는 자연현상이나 일상에서 벌어지는 사건을 수학적으로 기술한 문제이다. 서술형 수학 문제 풀이를 위해서는 인공지능 모델이 문장에 함축된 논리를 파악하여 수식 또는 답을 도출해야 한다. 때문에 서술형 수학 문제 데이터셋은 인공지능 모델의 언어 이해 및 추론 능력을 평가하는 지표로 활용되고 있다. 기존 연구에서는 문제를 이해할 때 숫자의 대소관계를 파악하지 않고 문제에 등장하는 변수의 논리적인 관계만을 사용하여 수식을 도출한다는 한계점이 존재했다. 본 논문에서는 자연어 이해계열 모델 중 SVAMP 데이터셋에서 가장 높은 성능을 내고 있는 Deductive-Reasoner 모델에 숫자의 대소관계를 파악할 수 있는 방법론인 EFE 를 적용했을 때 RoBERTa-base 에서 1.1%, RoBERTa-large 에서 2.8%의 성능 향상을 얻었다. 이 결과를 통해 자연어 이해 모델이 숫자의 대소관계를 이해하는 것이 정답률 향상에 기여할 수 있음을 확인한다.
지금까지 인공지능의 한 분야인 딥러닝 방법은 구조화되지 않은 데이터로부터 문제를 해결하는 놀라울만한 성과를 이루어왔지만, 인간처럼 여러 상황들을 종합적으로 판단, 그것들의 연관성을 추론하고, 그 다음 상황을 예측하는 수준의 지능을 갖는데 도달하지 못하였다. 최근 발표된 복잡한 관계 추론을 수행하는 심층 신경망은 인공지능이 인간의 핵심 지적 능력인 관계 추론을 보유할 수 있다는 것을 증명하였다. 본 논문에서는 관계 추론 심층 신경망 중에서 Relation Networks (RN)의 성능을 분석 및 관찰해 보고자 Sort-of-CLEVR 데이터 셋을 사용한 시각적 질의응답과 bAbI task를 사용한 텍스트 기반 질의응답 두 유형의 RN 기반 심층 신경망 모델을 구축하여 baseline 모델과의 비교를 통한 성능검증을 하였다. 또한 모델의 성능을 극대화하기 위하여 하이퍼 파라미터 튜닝 등 다양각도의 성능개선 실험으로 관계 추론을 위한 RN 기반 심층 신경망 모델의 성능개선 방법을 제안하였다. 제안한 성능개선 방법은 시각적 질의응답 모델과 텍스트 기반 질의응답 모델에 적용하여 그 효과를 검증하였고, 기존의 RN 모델에서 사용해보지 않았던 Dialog-based LL 데이터 셋을 사용하여 새로운 도메인에서의 제안한 성능개선 방법의 효과를 다시 한 번 검증하였다. 실험 결과 두 유형의 RN 모델 모두에서 초기 학습률이 모델의 성능을 결정하는 핵심 요인임을 알 수 있었고, 제안한 random search 방법에 의해 찾은 최적의 초기 학습률 설정이 모델의 성능을 최고 99.8%까지 향상 시킬 수 있다는 것을 확인하였다.
CAD 시스팀의 설계 도구 및 설계 데이터가 복잡하고 방대해 짐에 따라 DBMS를 통한 통합적이고 효율적인 데이터베이스 관리의 필요성이 대두하게 되었다. 본고에서는 주로 VLSI설계를 위한 CAD DBMS의 필용성과 이점, CAD특성에 따른 요구 조건을 살펴보고, 관계형 모델의 특성과 이 모델을 CAD 응용에 이용하기 위한 확장 기법에 관하여 논의하였다. 이러한 확장 기법은 설계 데이터의 계층적 특성을 반영한 질의어 생성, 공간적 탐색을 위한 데이터 구조, nested relation의 허용 등이며, 복잡한 오브젝트 특성을 제공하기 위해, 사용자가 원하는 데이터 유형이나 오퍼레이션을 지정할 수 있게 하는 기법도 포함된다. 끝으로 실제적으로 관계형 모델에 기초한 CAD DBMS의 연구, 개발 사례를 기술하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.