• Title/Summary/Keyword: 과학 빅데이터

Search Result 528, Processing Time 0.032 seconds

A Study of Perceptions of Big data Analysis service in Libraries (도서관 빅데이터 분석서비스 인식에 관한 연구)

  • Lee, Eun Jee;Kim, Wan-Jong
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2016.08a
    • /
    • pp.67-70
    • /
    • 2016
  • 빅데이터 시대로 변화함에 따라 도서관 및 정보서비스 분야에서도 데이터 분석에 대한 중요성이 점차적으로 증대되고 있다. 본 연구는 도서관 분야에서의 데이터 분석활용 현황 및 분석서비스에 대한 인식수준을 파악하고, 이를 바탕으로 데이터 분석 기반의 도서관 운영을 지원할 수 있는 빅데이터 분석 서비스 개선방안을 모색하고자 하였다. 먼저, 도서관 분야 데이터 분석 교육 전후 인식조사를 토대로 현재 데이터 분석현황 및 인식변화를 분석하였다. 또한 개인적 특성과 분석서비스 인식과의 관계를 분석하였고, 추가적으로 인식수준이 교육 및 분석서비스 만족도에 미치는 영향에 대해 살펴보았다. 분석결과를 기반으로 향후 데이터 분석 교육 및 분석서비스의 발전방향을 제시하였다.

  • PDF

Data-Driven Design Methodology based on Data Science Paradigm Focused on Design Research Case Study of Fine Dust Information App Service (데이터 과학의 방법론을 적용한 데이터 기반 디자인 방법론에 대한 연구 - 미세먼지 정보 서비스 앱의 디자인 리서치 사례를 중심으로)

  • Lee, Hyun Jhin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.103-114
    • /
    • 2021
  • This study explores research methodologies of design and data science, and applies data science paradigm on design process. Design research methodologies would have benefits of productivity and efficiency by using data driven design methodology. From insights of former studies, a new methodology of data driven design is suggested that design problem is transformed to data set attributes, such as variables, values and data patterns. The fine dust information app design is conducted as a case study to prove this methodology.

A Study on Wired and Wireless Networking for Science Big Data Transfer (과학빅데이터 고속전송을 위한 유무선 네트워킹 적용방안 연구)

  • Seok, Woojin;Kim, Kiwook;Kwak, Jaiseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.181-183
    • /
    • 2022
  • 본 논문에서는 과학빅데이터를 전송하는 방법으로 과학실험장비 에서 발생하는 빅데이터를 유선네트워크에서의 고속전송하는 기술 방안과 과학실험장비 내부에서의 데이터를 송수신하기 위한 근거리 고속 무선네트워크 기술에 대한 적용기술을 살펴보고자 한다. 이러한 유무선 네트워킹 기술이 해결하고자 하는 기술적 요소 등을 살펴보고 적용가능한 기술방안을 제안하고자 한다.

Big Data Conceptualization and Policy Design on Data Sovereignty (빅데이터의 개념적 논의와 데이터 주권에 대한 정책설계)

  • Moon, Hyejung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.911-914
    • /
    • 2013
  • 빅데이터가 이전의 대용량정보와 비교하여 어떠한 개념적인 의미를 지니는지 정책설계과정에 따라 이론적으로 논의하고, 이 시대 이슈가 되는 데이터 주권에 대하여 저작권과 CCL을 사례로 ICT정책의 설계방안을 제시한다. 사례분석의 결과 빅데이터 시대 데이터 주권에 대한 정책은 법, 시장, 기술, 규범 측면에서 균형 있게 설계되어야 하며 기술구조를 기초로 사회문제에 대한 규제구조를 설계하고 정책을 집행해야 한다.

A Study on ScienceDMZ Construction for High Speed Transfer of Science Big Data (과학빅데이터 고속전송을 위한 ScienceDMZ 구축 방안 연구)

  • Moon, Jeong-hoon;Kwak, Jai-seung;Hong, Won-taek;Kim, Ki-heyon;Lee, Sang-kwon;Kim, Dong-kyun;Kim, Yong-hwan;Yu, Ki-sung
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.12-21
    • /
    • 2019
  • There is a rapid development of experimental equipment and ICT technology in data-intensive scientific areas, thus, big data of more than exabyte size is being generated. However, the big data transmission technology does not satisfy the needs of the application researchers who utilize it. Various high-performance transmission technologies have been developed based on QoS(Quality of Service), but they also require changes in the clean slate method. On the other hand, ScienceDMZ technologies improve the performance of scientific big data transmission by bypassing the firewall that causes a big problem in transmission performance. In addition, it is possible to implement without changing the existing network. In this paper, we built ScienceDMZ in an international long-distance environment based on KREONET(Korea Research Environment Open NETwork), and we verified the performance. We also introduced how GPU platform could be linked in a distributed ScienceDMZ environment.

A Study on the Development of Phased Big Data Distribution Model Based on Big Data Distribution Ecology (빅데이터 유통 생태계에 기반한 단계별 빅데이터 유통 모델 개발에 관한 연구)

  • Kim, Shinkon;Lee, Sukjun;Kim, Jeonggon
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.95-106
    • /
    • 2016
  • The major thrust of this research focuses on the development of phased big data distribution model based on the big data ecosystem. This model consists of 3 phases. In phase 1, data intermediaries are participated in this model and transaction functions are provided. This system consists of general control systems, registrations, and transaction management systems. In phase 2, trading support systems with data storage, analysis, supply, and customer relation management functions are designed. In phase 3, transaction support systems and linked big data distribution portal systems are developed. Recently, emerging new data distribution models and systems are evolving and substituting for past data management system using new technology and the processes in data science. The proposed model may be referred as criteria for industrial standard establishment for big data distribution and transaction models in the future.

A Big data platform through MBTI personality type classification (MBTI 성격유형 분류를 통한 빅데이터 플랫폼)

  • Jin, Kyung-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.503-505
    • /
    • 2021
  • 정보통신 기술(ICT)의 발달로 이루어진 4 차 산업혁명으로 '빅데이터'의 시대가 도래하고 있다. 소셜 네트워크 서비스(SNS), 사물인터넷(IOT), 인공지능(AI) 등 다양한 장소에서 다양한 형태로 데이터들이 쌓이고 있다. 그중 MBTI 성격유형 검사를 통한 다양한 분석 시스템이 많아지고 있다. 사람들은 재미를 위해 자신의 성향을 입력하고 정해진 MBTI 검사 기준을 통해 결과를 받는다. 이러한 개개인의 성향 데이터를 모으면 거대한 빅데이터 플랫폼을 만들 수 있을 것이라 기대한다. 이에 본 논문은 구체적인 방안을 제시하고자 한다.

Development of Big Data System for Energy Big Data (에너지 빅데이터를 수용하는 빅데이터 시스템 개발)

  • Song, Mingoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • This paper proposes a Big Data system for energy Big Data which is aggregated in real-time from industrial and public sources. The constructed Big Data system is based on Hadoop and the Spark framework is simultaneously applied on Big Data processing, which supports in-memory distributed computing. In the paper, we focus on Big Data, in the form of heat energy for district heating, and deal with methodologies for storing, managing, processing and analyzing aggregated Big Data in real-time while considering properties of energy input and output. At present, the Big Data influx is stored and managed in accordance with the designed relational database schema inside the system and the stored Big Data is processed and analyzed as to set objectives. The paper exemplifies a number of heat demand plants, concerned with district heating, as industrial sources of heat energy Big Data gathered in real-time as well as the proposed system.

Implementation of Sensor Big Data Query Processing System for AI model training and inference of Power Turbine Equipment Failure Estimation (발전소 고장 예측 AI 모델 학습 및 추론을 위한 센서 빅데이터 질의 처리 시스템 구현)

  • Um, Jung-Ho;Yu, Chan Hee;Kim, Yuseon;Park, Kyongseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.545-547
    • /
    • 2021
  • 발전시설 장비는 이상이 생기면 큰 경제적 피해를 발생시키기 때문에, 장비의 계통마다 수십만 개의 센서들이 부착되어 장비의 정상 작동 여부를 모니터링 한다. 장비의 이상 감지를 위해서, 최근 활발히 연구되고 있는 딥러닝 등의 기술을 활용한 AI 모델을 생성하여 장비의 고장을 예측한다. AI 모델을 학습하고 추론하기 위해서는 수많은 센서 중에서 AI 모델을 생성할 센서들을 선택하고, 지속적으로 모니터링 되는 값들을 비교하여 이상 감지 여부를 스트리밍 환경에서 추론할 수 있는 센서 빅데이터 질의 처리 및 스트리밍 추론 시스템이 필요하다. 본 논문에서는 AI 모델을 학습하고 스트리밍 추론할 수 있는 빅데이터 질의 처리 시스템을 설계 및 구현한다.

An Analysis of Flood Vulnerability by Administrative Region through Big Data Analysis (빅데이터 분석을 통한 행정구역별 홍수 취약성 분석)

  • Yu, Yeong UK;Seong, Yeon Jeong;Park, Tae Gyeong;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.193-193
    • /
    • 2021
  • 전 세계적으로 기후변화가 지속되면서 그에 따른 자연재난의 강도와 발생 빈도가 증가하고 있다. 자연재난의 발생 유형 중 집중호우와 태풍으로 인한 수문학적 재난이 대부분을 차지하고 있으며, 홍수피해는 지역적 수문학적 특성에 따라 피해의 규모와 범위가 달라지는 경향을 보인다. 이러한 이질적인 피해를 관리하기 위해서는 많은 홍수피해 정보를 수집하는 것이 필연적이다. 정보화 시대인 요즘 방대한 양의 데이터가 발생하면서 '빅데이터', '머신러닝', '인공지능'과 같은 말들이 다양한 분야에서 주목을 받고 있다. 홍수피해 정보에 대해서도 과거 국가에서 발간하는 정보외에 인터넷에는 뉴스기사나 SNS 등 미디어를 통하여 수많은 정보들이 생성되고 있다. 이러한 방대한 규모의 데이터는 미래 경쟁력의 우위를 좌우하는 중요한 자원이 될 것이며, 홍수대비책으로 활용될 소중한 정보가 될 수 있다. 본 연구는 인터넷기반으로 한 홍수피해 현상 조사를 통해 홍수피해 규모에 따라 발생하는 홍수피해 현상을 파악하고자 하였다. 이를 위해 과거에 발생한 홍수피해 사례를 조사하여 강우량, 홍수피해 현상 등 홍수피해 관련 정보를 조사하였다. 홍수피해 현상은 뉴스기사나 보고서 등 미디어 정보를 활용하여 수집하였으며, 수집된 비정형 형태의 텍스트 데이터를 '텍스트 마이닝(Text Mining)' 기법을 이용하여 데이터를 정형화 및 주요 홍수피해 현상 키워드를 추출하여 데이터를 수치화하여 표현하였다.

  • PDF