• Title/Summary/Keyword: 과학적 증거

Search Result 385, Processing Time 0.021 seconds

Comparison and Analysis between Human Breast Cancer Cells and Hepatoma Cells for the Effects of Xenobiotic Nuclear Receptors (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, and Peroxisome-Proliferator-Activated Receptor γ ) on the Transcriptional Activity of Estrogen Receptor (유방암 세포와 간암세포에 있어서 에스트로겐 수용체의 전사조절기능에 대한 Xenobiotic 핵 수용체 (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, Peroxisome-Proliferator-Activated Receptor γ )의 영향 비교분석)

  • 민계식
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.314-323
    • /
    • 2003
  • The purpose of this study was to examine the effects of xenobiotic nuclear receptors, CAR, SXR, and PPAR${\gamma}$ on the transcriptional activity of estrogen receptor in human breast cancer cell lines and compare with those in human hepatoma cell line. Two different breast cancer cell lines, MCF-7 and MDA-MB-231 were cultured and effects of CAR, SXR, and PPAR${\gamma}$ on the ER-mediated transcriptional activation of synthetic (4ERE)-tk-luciferase reporter gene were analyzed. Consistent with the previous report, CAR significantly inhibited ER-mediated transactivation and SXR repressed modestly whereas the PPAR${\gamma}$ did not repress the ER-mediated transactivation. However, in breast cancer cells neither of the xenobiotic receptors repressed the ER-mediated transactivation. Instead, they tend to increase the transactivation depending on the cell type and xenobiotic nuclear receptors. In MCF-7, SXR but neither CAR nor PPAR${\gamma}$ slightly increased ER-mediated transactivation whereas in MDA-MB-231, CAR and PPAR${\gamma}$ but not SXR tend to increase the transactivation of the reporter gene. These results indicate that the effects of ER cross-talk by the CAR, SXR, and PPAR${\gamma}$ , are different in breast cancer cells from hepatoma cells. In conclusion, the transcriptional regulation by estrogen can involve different cross-talk interaction between estrogen receptor and xenobiotic nuclear receptors depending on the estrogen target cells.

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Studies on the Zanthoxylum piperitum $D_E$ $C_{ANDOLIE}$ - 1. Pungent principles and Essential oil composition - (천초(川椒)에 관(關)한 연구(硏究) - 1. 신미성분(辛味成分)과 정유성분(精油成分) -)

  • Jung, Hyun-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.123-127
    • /
    • 1987
  • The Pungent principles and Essential oil compositions of Zanthoxylum piperitum $D_E$ $C_{ANDOLIE}$(peel, barb) were analysed by HPLC and GC, respectively. Total Pungent principle contents of peels were about as 12 times as those of barks. The Sanshool I, Sanshool IV, Sanshool III and Sanshoo V were the major Pungent principles in the peels and barks. Besides, several Unknown Pungent principles were discovered in the peels and barks, too. Total Essential oil contents of peels were higher than those of barks at the ratio of 1.8 % to 0.5%. The Cineol+Limonene(37.7%) were the main Essential oil compositions in the peels, while ${\alpha}-Terpineol(16.5%)$ and Pinene(15.5%) were the major portion in the barks. The Essential oil of peels and barks were composed Pinen, Myrcene, Cineol+Limonene, Linalool, Isopulegol, Terpinen-4-ol, ${\alpha}-Terpineol$ and Piperitone. Besides, seven Unknown compositions were discovered, too.

  • PDF

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF

Enhancement of Protein Aggregate Clearance in Huntington's Disease Model viaCRISPR/dCas9 Activation of NAGK and Reln Genes (CRISPR/dCas9을 통한 NAGK 및 Reln 유전자 활성화에 의한 헌팅턴병 모델에서 단백질 응집체 제거 촉진)

  • Diyah Fatimah Oktaviani;Raju Dash;Sarmin Ummey Habiba;Ho Jin Choi;Yeasmin Akter Munni;Dae-Hyun Seog;Maria Dyah Nur Meinita;Il Soo Moon
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.609-619
    • /
    • 2024
  • Neurodegenerative diseases are marked by the accumulation of toxic misfolded proteins in neurons. Therefore, strategies for the effective prevention and clearance of aggregates are crucial for therapeutic interventions. Cytoplasmic dynein plays a crucial role in the clearance of aggregates by transporting them to the cell center, where lysosomes are enriched and the aggregates undergo extensive autophagic degradation. Previously, we reported evidence for the activation of dynein by N-acetylglucosamine kinase (NAGK) and Reln. In the present study, we explored the effects of NAGK and Reln upregulation on the clearance of aggregates. To upregulate NAGK and Reln genes in HEK293T cells (a human embryonic kidney cell line), CRISPR/dCas9 activation systems (CASs) were used with specific plasmids encoding target-specific 20 nt guide RNA. The effects of this genetic modulation were analyzed in Huntington's disease cellular models, including HEK293T cells and primary mouse cortical cells, where external mutant huntingtin (mHtt, Q74) aggregates were induced. The results showed that the CAS activation of NAGK or Reln, or their combination, significantly reduced the proportion of cells with Q74 aggregates (aggresomes). This effect was reversed by Ciliobrevin D (a dynein inhibitor) and chloroquine (an autophagy inhibitor), indicating the role of dynein-mediated autophagy in aggregate clearance. These findings provide the basis for therapeutic strategies aimed at enhancing neuronal health through targeted gene activation.