• Title/Summary/Keyword: 과학적 사고과정

Search Result 555, Processing Time 0.027 seconds

The Role of Deductive Reasoning in Scientific Activities (과학활동에서 연역적 사고의 역할)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 1998
  • What does mean the statement that scientific reasoning is logical? In this study, we clarify the logical structure of the scientific explanation, prediction and the process of hypothesis testing. To simplify and identify the structure of scientific explanations and prediction more clearly, we used syllogism and presented various concrete examples. Especially, we showed that the logical structure of scientific explanation was well reflected in dynamics. Based on this analysis, it can be said that the deficit of students' understanding of dynamics is because that many scientific activities are focused on prediction rather than explanation. To explain the process of hypothesis testing, we reinterpreted the Wason's selection task as two stages: the process of prediction of experimental phenomena based on the presented hypothesis, and the process of the hypothesis testing based on the predicted experimental phenomena. And we suggested the reason of the logical fallacy of 'affirming the consequent' in science was because that many scientific relationships between the variables is one-to-one relationship, and compared this suggestion with the Lawon's multiple hypothesis theory. To check out the effect of content on the deductive reasoning, we reviewed some researches about psychology and psychology of science. And to understand the role of deductive reasoning in student's scientific activities, we reviewed researches about the analysis of students' responses in the task of conceptual change or evaluation of evidence and so on.

  • PDF

Improvement of Students' Problem Finding and Hypothesis Generating Abilities: Gifted Science Education Program Utilizing Mendel's Law (문제발견 및 가설설정 능력 신장 과학영재교육프로그램 개발: 멘델의 과학적 사고과정 적용)

  • Kim, Soon-Ok;Kim, Bong-Sun;Seo, Hae-Ae;Kim, Young-Min;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.1033-1053
    • /
    • 2011
  • In the process of establishing the principle of genetics, Mendel discovered problems based on various observations. Mendel's scientific thinking ability can be effective if this ability is embedded in gifted science education programs. The study aims to develop a science gifted education program utilizing Mendel's scientific thinking ability shown in the principles of genetics and examine students' changes in scientific thinking ability before and after the program implementation. For the program development, first, the characteristics of Mendel's scientific thinking ability in the process of establishing the principle of genetics were investigated and extracted the major elements of inquiry. Second, the science gifted education programs was developed by applying the inquiry elements from the Mendel's Law. The program was implemented with 19 students of $7^{th}$, $8^{th}$ graders who attend the science gifted education center affiliated with university during July 2011. The Mendel's scientific thinking ability was classified into induction, deduction, and integration. The elements of inquiry extracted from the Mendel's scientific thinking include making observation, puzzling observation, proposing causal questions, generating hypothesis, drawing inference, designing experiment, gathering and analyzing data, drawing conclusions, and making generalization. With applying these elements, the program was developed with four phases: $1^{st}$ - problem finding; $2^{nd}$ - hypothesis generating; $3^{rs}$ - hypothesis testing and $4^{th}$ - problem solving. After implementation, students' changes in scientific thinking ability were measured. The findings from the study are as follows: First, students' abilities of problem finding is significantly (p<.05) increased. Second, students' abilities of hypothesis generating is significantly (pp<.05) increased.

Analysis on Creative Thinking Leaning Between Scientifically Gifted Students and Normal Students (과학영재와 일반학생들의 창의적 사고 편향에 대한 분석)

  • Chung, Duk-Ho;Park, Seon-Ok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.1
    • /
    • pp.175-191
    • /
    • 2011
  • This study is to investigate the creative thinking style and it's leaning that normal students and scientifically gifted students use mainly at processing information. Right Brain vs Left Brain Creativity Test(R/LCT) and Brain Preference Indicator(BPI) is taken to investigate the creative thinking style of normal students(N=144) and scientifically gifted students(N=97). In the R/LCT, the normal students responded that they prefer to use right-brain thinking rather than left-brain thinking. But the scientifically gifted students prefer to left-brain thinking. The normal students showed most preference for Holistic Processing of right side brain and they did most avoiding for Verbal Processing of left side brain. The scientifically gifted students showed most preference for Logical Processing of left side brain. And they did most avoiding for Random Processing of right side brain. There was a meaningful difference between left side brain preference group and right side brain preference group on Sequential, Symbolic, Logical, Verbal, Random, Intuitive, Fantasy-oriented Processing of normal Students. But the scientifically gifted students showed a meaningful difference in right side brain processing mainly. In other word, all the scientifically gifted students took an lean processing in Logical, Symbolic, Linear Processing, etc. In sum, the scientifically gifted students are unequal in at processing information against the normal students. So it is required more appropriate teaching-learning method based on the creative thinking style and it's leaning for effective gifted education.

An Analysis of the Characteristics of Elementary Science Gifted Students' Problem Solving through Model Eliciting Activity(MEA) (Model Eliciting Activity(MEA)를 통한 초등 과학영재들의 문제해결 특성 분석)

  • Yoon, Jin-A;Han, Gum-ju;Nam, Younkyeng
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.1
    • /
    • pp.64-81
    • /
    • 2019
  • The purpose of this study is to analyze elementary science gifted students' characteristics of the thinking in the problem solving process through a MEA(Model Eliciting Activity)activity. The subjects of this study are 40 elementary science gifted students who passed the first screen for the admission to the science gifted education institute in P university in 2018. The MEA activity was 'Coffee cup challenge', which is to find the best way to place cup side and bottom to save paper in a given material. Three drawings from each student and explanations of each drawing through out the design process were collected as the main data source. The data were analyzed by statistically (correlation coefficient) and qualitatively to find the relationship between; 1) the intuitive thinking and visual representation and 2) analytical thinking ability and communication skills that reflect MEA activities. In conclusion, first, intuitive thinking plays an important role in the ability of visual representation through pictures and the whole problem solving process. Second, the analytical thinking and elaboration process which are reflected through reflection on the arrangement of the drawings have a great influence on the communication skills. Therefore, this study investigated that MEA activities are useful activities to stimulate both intuitive and analytical thinking in elementary science gifted students, and to develop communication ability, by organizing their own ideas and providing learning opportunities for various solutions.

Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies (귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.551-561
    • /
    • 2016
  • The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and the current article dealt with an early process of redesigning an abductive inquiry activity in geology. In the theoretical study, an extensive review was conducted with the literature addressing abduction and modeling together as research methods characterizing earth science. The result led to a tentative scheme for modeling-based abductive inference, which represented relationships among evidence, resource models, and explanatory models. This scheme was improved by the empirical study in which experts' reasoning for solving a geological problem was analyzed. The new scheme included the roles of critical evidence, critical resource models, and a scientifically sound explanatory model. Pedagogical implications for the support of student reasoning in modeling-based abductive inquiry in earth science was discussed.

Type of Thinking and Generating Processes of Causal Questions Appeared in Preservice Elementary Teachers' Observation Activity (초등예비교사들의 관찰활동에서 나타난 인과적 의문의 사고 유형과 생성 과정)

  • Lee Hea-Jung;Park Kuk-Tae;Kwon Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2005
  • The purpose of this study was to identify the type of thinking and generating processes of causal questions which were generated in preservice elementary teachers' observing activities. To find the generating processes of causal questions, 4 observing tasks, the task of grapes in soda, the candlelight, the celery, and the rock tasks, were administered to 7 preservice elementary teachers majoring in science education. The results of this study were as follows: The types of thinking in generating explicans exploration questions were classified as 8 types and explicans verification questions were classified as 9 types. The generating processes of explicans exploration questions were classified as 6 steps and explicans verification questions were classified as 5 steps. The results of this study may be used as a teaching strategy for guiding the direction and the method of scientific questions and developing the teaching-teaming programs that help student to generate scientifc questions.

  • PDF

Development and Application of Elementary Science Curriculum to Enhance Creative Problem Solving Abilities (창의적 문제해결력 신장을 위한 초등과학교육과정 개발 및 적용)

  • Cho, Youn-Soon;Seong, Jin-Sook;Chae, Je-Sook;Koo, Seong-Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.307-328
    • /
    • 2000
  • The purpose of this study is to develop and implement an alternative elementary science curriculum to enhance creative problem solving abilities. The curriculum consisting of three main elements was developed. The three elements are content knowledge, process knowledge and creative thinking skills. The curriculum was validated by more than 10 science educators, scientists, and curriculum specialists. In order to implement the curriculum, three lessons for 5th grade were developed and taught by a problem-based-learning(PBL) method in an experimental group during the second semester. For the comparison group the ordinary lesson based on the 6th national science curriculum was taught by the same science teacher during the same period. Performance assessment was developed and used for the pre and post test. Two-way ANOVA, and T-test were used to check whether there are any significant differences between the gains of scores(pre-post test) of the two groups. The results of the test showed that the experimental group increased significantly in the total creative thinking problem solving skills, but the comparision group did not.

  • PDF

Analysis of Programming Processes Through Novices' Thinking Aloud in Computational Literacy Education (프로그래밍 과정에서 나타나는 초보학습자들의 행동 및 사고과정 분석)

  • Kim, Soo-Hwan;Han, Seon-Kwan;Kim, Hyeon-Cheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose in this paper is to provide the theoretical framework of characteristics of programming thinking processes in computational literacy education. That is, we developed the theoretical framework through analyzing novices' cognitive thinking processes, applied it to the real situation about computational literacy problem-solving processes and defined characteristics of the processes. For this purpose, we tried to analyze characteristics of programming thinking processes of novices by using think-aloud method. Also we developed the programming process code about novices' cognitive processes and programming processes, and analyzed the process that novice faced and overcame programming barriers by using qualitative research tool, Nvivo. As a result, we found what characteristics of programming problem-solving processes were and how novices used the thinking skill in the process. This study contributes to understand programming problem-solving processes and provides the criterion to analyze the processes scientifically.

  • PDF

Analysis of Students' Processes of Generating Scientific Explanatory Hypothesis - Focused on the Definition and the Characteristics of Scientific Hypothesis - (학생의 과학적 설명가설의 생성과정 분석 - 과학적 가설의 정의와 특성을 중심으로 -)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.4
    • /
    • pp.667-679
    • /
    • 2000
  • One of the major activities in scientific inquiry, as well as in the process of conceptual change, is the generation of scientific hypothesis. In this study, the definition and the characteristics of scientific hypothesis are analyzed. Especially, differences between explanatory hypothesis and scientific explanation, predictive hypothesis and scientific prediction, and scientific hypothesis and the inductive generalization are analyzed. And the process of making scientific hypothesis is suggested as 4 stages, and the role and the characteristic of the abductive thinking, which can be viewed as one of the scientific inferences needed to generate hypothesis, are discussed. In analysis, concrete examples from integrated science textbook of high school are used for application to the classroom teaching.

  • PDF