• Title/Summary/Keyword: 과학기술 데이터

Search Result 2,575, Processing Time 0.031 seconds

Research on regional spatial information analysis platform about NTIS raw data (국가과학기술지식 원시데이터에 관한 지역 공간정보 분석 플랫폼 연구)

  • Lim, Jung-Sun;Kim, Sanggook;Bae, Seoung Hun;Kim, Kwang-Hoon;Won, Dong-Kyu
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Due to the coronavirus pandemic and diplomatic disputes, governments are actively developing a policy to revitalize·reshore manufacturing and to diversify international cooperations. In order to develop such a policy, it is very important to compare and analyze domestic·international geospatial information. Over the decade, the US·EC governments have conducted a series of national researches to build data-based tools that can monitor·analyze regional geospatial information driven by government R&D investments. In the case of the EC system, it can compare geospatial information in domestic and international(including Korea) regions. Compared to US·EC cases, Korean examples of national researches with available data analplatform need future improvements. Current study is investigating an automated analysis methodologies using "National Institute of Science and Technology Information (NTIS)" DB, which was national security data until recently. Research on data-mining regional geospatial information can contribute to support policy fields that need to discover new issues in response to unexpected social problems such as recently faced corona and trade disputes.

Big Data Processing and Management Service on Cloud (클라우드 기반 대규모 데미터 처리 및 관리 기술)

  • Lee, M.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2009
  • 인터넷 서비스 데이터량의 지속적인 증가로 대량의 원시 데이터로부터 정보를 가공 처리하는 과정, 체계화된 정보의 저장 관리 및 유용한 정보를 추출하기 위한 분석 등에 분산 컴퓨팅 기술을 적용하는 움직임이 활발히 진행되고 있다. 기존의 RDBMS 기술, MPI 분산 처리 기술 등은 대규모 데이터 처리 환경에 적용하기에는 운영 환경, 기능/성능면에서 확장성 혹은 고비용 문제가 따른다. 그러므로 저가의 서버들로 구성된 대규모 클러스터 환경을 기반으로 분산 컴퓨팅 기술을 적용한 새로운 시스템들이 대규모 데이터 처리를 요하는 인터넷 서비스 응용에 이용되고 있다. 이를 기반으로 바이오인포매틱스, 과학 시뮬레이션, 비즈니스 인텔리전스 등 다른 응용 영역으로 확대하여 클라우드 서비스로 제공하려는 비즈니스 모델이 제시되고 있다. 본 논문에서는 이와 같은 분산 컴퓨팅 기술을 적용한 대규모 데이터 저장 관리 및 처리 기술 동향을 조사하고 클라우드 기반 서비스로의 발전 방향을 서술한다.

A recommender of academic papers using the citation analysis (인용논문 분석을 통한 학술 문서 추천 시스템)

  • Park, Sang-Jin;Kim, Yoon-Hyun;Lee, Ji-Hyun
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.279-282
    • /
    • 2011
  • 인터넷의 급속한 보급으로 사용자가 정보와 지식의 접근이 용이 해진 반면, 방대한 정보의 과 부화로 인하여 데이터의 신뢰성이 문제시 되고 있다. 특히, 기존의 학술 연구와 관련된 논문 데이터 검색에 있어서, 사용자의 요구 사항에 정확히 부합하는 결과물을 제공하는 데는 많은 한계를 가진다. 본 연구는 기존의 단순 키워드 매칭 검색의 한계를 넘어서, 레퍼런스와 인용 논문을 활용한 내용 기반 검색 방법론을 제안 한다.

2D Artificial Data Set Construction System for Object Detection and Detection Rate Analysis According to Data Characteristics and Arrangement Structure: Focusing on vehicle License Plate Detection (객체 검출을 위한 2차원 인조데이터 셋 구축 시스템과 데이터 특징 및 배치 구조에 따른 검출률 분석 : 자동차 번호판 검출을 중점으로)

  • Kim, Sang Joon;Choi, Jin Won;Kim, Do Young;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • Recently, deep learning networks with high performance for object recognition are emerging. In the case of object recognition using deep learning, it is important to build a training data set to improve performance. To build a data set, we need to collect and label the images. This process requires a lot of time and manpower. For this reason, open data sets are used. However, there are objects that do not have large open data sets. One of them is data required for license plate detection and recognition. Therefore, in this paper, we propose an artificial license plate generator system that can create large data sets by minimizing images. In addition, the detection rate according to the artificial license plate arrangement structure was analyzed. As a result of the analysis, the best layout structure was FVC_III and B, and the most suitable network was D2Det. Although the artificial data set performance was 2-3% lower than that of the actual data set, the time to build the artificial data was about 11 times faster than the time to build the actual data set, proving that it is a time-efficient data set building system.

A Study on Elementary Education Examples for Data Science using Entry (엔트리를 활용한 초등 데이터 과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Data science starts with small data analysis and includes machine learning and deep learning for big data analysis. Data science is a core area of artificial intelligence technology and should be systematically reflected in the school curriculum. For data science education, The Entry also provides a data analysis tool for elementary education. In a big data analysis, data samples are extracted and analysis results are interpreted through statistical guesses and judgments. In this paper, the big data analysis area that requires statistical knowledge is excluded from the elementary area, and data science education examples focusing on the elementary area are proposed. To this end, the general data science education stage was explained first, and the elementary data science education stage was newly proposed. After that, an example of comparing values of data variables and an example of analyzing correlations between data variables were proposed with public small data provided by Entry, according to the elementary data science education stage. By using these Entry data-analysis examples proposed in this paper, it is possible to provide data science convergence education in elementary school, with given data generated from various subjects. In addition, data science educational materials combined with text, audio and video recognition AI tools can be developed by using the Entry.

메타데이터 레지스트리의 표준화 동향

  • Baek, Du-Gwon
    • Journal of Scientific & Technological Knowledge Infrastructure
    • /
    • s.9
    • /
    • pp.20-25
    • /
    • 2002
  • 정보공유를 위한 표준화된 데이터 관리 및 이들에 대한 관리 메카니즘를 지원하기 위한 작업의 일환으로 ISO/IEC JTC1 WG2 - 데이터 관리 및 교환(Data Management and Interchange)에서는 데이터 공유 및 교환을 위한 근본적인 해결방안으로 메타데이터 레지스트리(Metadata Registry : MdR)에 대한 표준화를 진행하고 있다.

  • PDF

A Study on the Strategies for Publishing Data Journals in the Field of Ecology: Focused on K Institution (생태학 분야 데이터 저널 발행 전략 연구 - K기관을 중심으로 -)

  • Jung, Youngim;Kwon, Ohseok;Kim, Kidong;Kim, Sohyeong;Seo, Tae-Sul;Kim, Suntae
    • Journal of Korean Library and Information Science Society
    • /
    • v.51 no.4
    • /
    • pp.83-100
    • /
    • 2020
  • The importance of data publishing in the open-science era is increasing as it can contribute to other scientific discoveries by accelerating the sharing of research data, improving accessibility and citability, and providing standardized technical documentation for research data. In addition, the need for data papers is emerging as a way for data papers to maintain a status equivalent to research papers, and the publication of data journals is on the rise as a new type of scholarly publishing. In particular, the field of Ecology is a field where large-scale research data are produced and managed, thus the data journal publishing in this field is active worldwide. On the other hand, the research on data journal is in its early stages in Korea, and there is no data journal in the field of Ecology. Thus, this study explores and presents strategies for publishing data journals in the ecological field. First, we investigate the publishing status of domestic and international data journals and the publication status of domestic journals. Then, we conducted a focused group interview with experts of scholarly publishing, open access policy and journal publishing in the field of Ecology. Finally, based on the survey and the expert FGI's results, strategies are suggested in terms of publishing data journals in the field of ecology, organizing and publishing journals, organizing journal editors, and receiving manuscripts.

The gene prediction method considering stages of cancer, obtained by integrating gene expression, genetic interaction data and document (문헌정보와 유전자 발현 및 상호 작용 데이터를 통합, 암의 단계를 고려한 질병 유전자 예측 방법)

  • Kim, Jungrim;Yeu, Yunku;Park, Sanghyun
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1113-1116
    • /
    • 2013
  • 유전체에 대한 관심이 크게 증가하면서, 이에 따른 다양한 연구가 이루어졌다. 그 결과 유전체와 관련된 다양한 종류의 데이터가 얻어졌으며, 그것을 해석하고 다른 데이터와 통합하는 것이 중요한 연구과제 중 하나가 되었다. 본 논문은 유전자 상호작용(genetic interaction) 데이터, 유전자 발현 데이터, 문헌으로부터 텍스트마이닝 기술을 통해 얻은 이종(heterogeneous) 데이터를 통합하여 암과 관련이 있는 유전자를 찾는 실험을 수행하였다. 또한, 단순히 질병(disease)-정상(normal)의 대조가 아니라 암의 단계(stage)를 고려한 실험을 수행하였다. 데이터를 통합하지 않거나 암의 단계를 고려하지 않았을 경우에 비하여 제안하는 방법이 더 높은 유전자 예측 성능을 나타냈다.

A Document Management System That Can Handle over Terabyte Order Data - An Integration of Self Organized Picture Search, 3D Graphics and DVD Changer Control Technology - (테라바이트급 데이터를 축적.검색표시할 수 있는 문서관리 시스템 - 3D 그래픽과 화상검색 및 DVD 체인저 제어기술의 융합 -)

  • Yoshihiro, Mori;Hiroyuki, Nitta;Mitsuji, Inoue;Koji, Kimura;lzuru, Shimamoto;Hiroharu, Ito;Atsushi, Kitamachi
    • Journal of Information Management
    • /
    • v.32 no.1
    • /
    • pp.108-119
    • /
    • 2001
  • Creating digital document by scanning paper or using a digital camera or using a computer is a daily task at every office. Digital document is increasing at high pace. The quantity of digital document is almost beyond the maximum capacity of the online storage and is destroying searching efficiency. To solve these problems, we developed a document management system(ChronoStar) by integrating various searching methods(Picture, Full-Text Related), 3D graphic and a DVD changer.

  • PDF