• Title/Summary/Keyword: 과학기술 데이터

Search Result 2,591, Processing Time 0.024 seconds

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.