Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.3
/
pp.879-886
/
2018
The basic search engine on Twitter shows not only tweets that contain search keywords, but also all articles written by users with nicknames containing search keywords. Since the tweets unrelated to the search keyword are exposed as search results, it is inconvenient to many users who want to search only tweets that include the keyword. To solve this inconvenience, this study improved the search function of Twitter by developing an algorithm that searches only tweets that contain search keywords. The improved functionality is implemented as a Web service using ASP.NET MVC5 and is available to many users. We used a powerful collection method in C# to retrieve the results of an object, and it was also possible to output them according to the number of 'retweets' or 'favorites'. If the number of retrieved numbers is less than a given number, we also added an exclusion filter function. Thus, sorting search results by the number of retweets or favorites, user can quickly search for opinions that are of interest to many users. It is expected that many users and data analysts will find the developed function convenient to search on Twitter.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.3
/
pp.57-67
/
2018
The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.3
/
pp.361-370
/
2017
In this paper, correlation analysis was performed between questionnaire and machine learning based aggressive tendency measurements. this study is part of a aggressive driver detection using machine learning and questionnaire. To collect two types tendency from questionnaire and measurements system, we constructed experiments environments and acquired the data from 30 drivers. In experiment, the machine learning based aggressive tendency measurements system was designed using a driver behavior detection model. And the model was constructed using accelerate and brake position data and hidden markov model method through supervised learning. We performed a correlation analysis between two types tendency using Pearson method. The result was represented to high correlation. The results will be utilize for fusing questionnaire and machine learning. Furthermore, It is verified that the machine learning based aggressive tendency is unique to each driver. The aggressive tendency of driver will be utilized as measurements for advanced driver assistance system such as attention assist, driver identification and anti-theft system.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.6
/
pp.827-837
/
2017
Since the area of smart home has been attracting attention, researches have been conducted to control syntagmatically various electronic products with a single remote controller. Previous researches have developed a dedicated controller or an application that acts as a remote controller and controls electronic products by configuring control screen for each product. However, these approaches are not suitable for controlling various electronic products that should be controlled by configuring separate control screens for each product. In this paper, we propose a web-based remote control platform. We define universal user interfaces applicable to various devices by categorizing user interactions of electronic goods and implement them as APIs. By applying the APIs to IPTV and car navigation devices we show that it is possible to control them through only a web browser. We also propose a method to group multiple control requests in order to efficiently handle consecutive control requests and show the improved response time and data usage.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.10
/
pp.935-943
/
2017
CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.20
no.1
/
pp.39-57
/
2009
The two urban-area public libraries and two rural ones that are located in the Gyungsangnam-do province were selected for this paper, and the circulation records in 2007 were collected, and both MS-excel and SPSS were used for their analysis. The collected data were categorized into their collection type, circulation frequencies, and subjects. Also the four libraries were compared and analyzed again for the purpose of comparing the characteristics of the public libraries in urban and rural areas. The number of circulated books, lent number, use factor, and the number of publication lapse year were extracted and analyzed using various types of statistical methods such as correlation coefficient and nonparametric chi-square analysis, etc. as well as descriptive ones.
Journal of Korea Entertainment Industry Association
/
v.13
no.8
/
pp.563-572
/
2019
This study was conducted to investigate the effects of school stress and resilience on school children's quality of life. The participants for this study were 266 children of 4, 5, and 6 grades at two elementary schools in G Metropolitan City. Data were collected from September to October, 2019. The participants were assessed for academic stress, resilience, quality of life, and analyzed using descriptive statistics, t-tests, ANOVA, Pearson correlation coefficient, and multiple regression analysis. As a result, factors affecting the quality of life of school-age children were academic stress (β= -.29, p<.001), extracurricular academic stress (β= -.19, p= .004), and resilience (β= .19, p<.001), this variable explained 31.2% of the quality of life of school-age children. The lower the academic stress and the higher the resilience, the higher the quality of life. Therefore, in order to improve the quality of life of school-age children, providers need to develop intervention programs that take these factors into account.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.108-108
/
2022
기후변화는 전 지구 수문순환과 수자원 분포에 커다란 영향을 준다. 하지만 지금까지 관측되어온 지구상의 건조도 변화에 있어서 기후의 자연변동성의 영향과 인간활동에 의한 온난화의 영향을 명시적으로 밝힌 연구는 존재하지 않는다. 본 연구에서는 데이터 구동형 모델과 물리 모델을 이용해 관측 기반의 전구 수자원 분포를 1902년부터 2014년까지 재구축함으로써 지구의 평균온도가 약 1도 상승해온 지난 세기에 걸쳐 건기의 수자원 분포가 어떻게 변해왔는지 보인다. 재구축된 전구 변화 패턴은 인간활동에 의한 온실가스 증가등을 고려한 기후 모델 시뮬레이션과 흡사함을 알 수 있었으며 기후의 자연변동성만을 고려한 기후 모델 시뮬레이션에서는 발견되지 않았다. 주로 북아시아, 북미, 유럽 등 중위도 온대지방에서 더욱더 건조한 건기가 뚜렷하게 나타났으며 이는 강수량의 감소보다는 증발산의 증가에 기인하는 것으로 나타난다. 이와 같은 건조도의 변화는 미래 있어서 또한 인류에 대한 커다란 위협으로 자리한다. 미래 기후에서의 가뭄의 변화에 대해 다양한 연구들이 존재하지만 대부분 높은 수준의 온난화 (예를들어 RCP-SSP 585)에서의 영향에 국한된다. 다시 말해 인류가 21세기 중반에 달성을 목표로 하는 탄소중립이 가뭄의 측면에서 어떤 영향을 주게 될지에 대한 연구는 아직 충분하지 않다고 할 수 있다. 본 연구에서는 약한 혹은 중간 수준의 기후변화 시나리오를 이용해 파리협약에서 목표로 하는 1.5℃와 2℃ 상승에 따라 전 지구의 건조도 분포가 어떻게 변하고 그 변화에 있어서 어떠한 수문기후학적 메커니즘이 작용하는지 밝힌다. 지중해 연안 지역에서는 건조도의 가속이 +1.5℃와 +2℃사이에 존재하였으나 동아시아에서는 +1.5℃와 +2℃ 모두에서 습윤해짐을 알 수 있었으며 이러한 지역적 불균일성은 기후변화 대응 노력에 있어서 과거 온실가스 배출에 대한 책임뿐만 아니라 다양한 부문에 걸친 미래의 잠재 적응 노력 또한 고려해야만 함을 시사한다. 본 연구는 제6차 Coupled Model Intercomparison Project의 Land Surface, Snow, Soil-moisture Model Intercomparison Project (CMIP6/LS3MIP)와 Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI)의 다중 모델 앙상블 시뮬레이션 결과를 이용했다.
In the learned machine learning, the performance of machine learning degrades at the same time as drift occurs in terms of learning models and learning data over time. As a solution to this problem, I would like to propose the concept and evaluation method of ML drift to determine the re-learning period of machine learning. An XAI test and an XAI test of an apple image were performed according to strawberry and clarity. In the case of strawberries, the change in the XAI analysis of ML models according to the clarity value was insignificant, and in the case of XAI of apple image, apples normally classified objects and heat map areas, but in the case of apple flowers and buds, the results were insignificant compared to strawberries and apples. This is expected to be caused by the lack of learning images of apple flowers and buds, and more apple flowers and buds will be studied and tested in the future.
Seoin Park;Jiho Lee;Seunghyun Lee;Janghyeok Yoon;Changho Son
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.4
/
pp.1-14
/
2023
As markets and industries continue to evolve rapidly, technology opportunity discovery (TOD) has become critical to a firm's survival. From a common consensus that TOD based on a firm's capabilities is a valuable method for small and medium-sized enterprises (SMEs) and reduces the risk of failure in technology development, studies for TOD based on a firm's capabilities have been actively conducted. However, previous studies mainly focused on a firm's technological capabilities and rarely on business capabilities. Since discovered technologies can create market value when utilized in a firm's business, a firm's current business capabilities should be considered in discovering technology opportunities. In this context, this study proposes a TOD method that considers both a firm's business and technological capabilities. To this end, this study uses patent data, which represents the firm's technological capabilities, and trademark data, which represents the firm's business capabilities. The proposed method comprises four steps: 1) Constructing firm technology and business capability matrices using patent classification codes and trademark similarity group codes; 2) Transforming the capability matrices to preference matrices using the fuzzy function; 3) Identifying a target firm's candidate technology opportunities using the collaborative filtering algorithm; 4) Recommending technology opportunities using a portfolio map constructed based on technology similarity and applicability indices. A case study is conducted on a security firm to determine the validity of the proposed method. The proposed method can assist SMEs that face resource constraints in identifying technology opportunities. Further, it can be used by firms that do not possess patents since the proposed method uncovers technology opportunities based on business capabilities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.