• Title/Summary/Keyword: 과학기술위성 2호(STSAT-2)

Search Result 46, Processing Time 0.021 seconds

Design of S-band Turnstile Antenna Using the Parasitic Monopole (기생 모노폴을 이용한 S-band Turnstile 안테나 설계)

  • Lee, Jung-Su;Oh, Chi-Wook;Seo, Gyu-Jae;Oh, Seung-Han
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1082-1088
    • /
    • 2006
  • A turnstile antenna using the parasitic monopole has been developed for STSAT-2 TT&C application. The antenna consists of two radiating elements; a bow-tie dipole and a parasitic monopole. The bow-tie dipole is main radiating element, used a bow-tie structure for bandwidth improvement and size reduction. The parasitic monopole improved beamwidth and axial ratio. The input impedance of the antenna is about 50 ohm without a matching circuit. The proposed antenna has beamwidth of $>140^{\circ}$, axial ratio of < 3 dB and VSWR of < 1.5 in the band of $2.075{\sim}2.282GHz$.

SENSITIVITY CALCULATIONS FOR THE COSMIC IR BACKGROUND OBSERVATIONS BY MIRIS (과학기술위성 3호 다목적 적외선 영상시스템 적외선 우주배경복사 관측 감도 계산)

  • Lee, Dae-Hui;Lee, Seong-Ho;Han, Won-Yong;Park, Jang-Hyeon;Nam, Uk-Won;Jin, Ho;Yuk, In-Su;Park, Yeong-Sik;Park, Seong-Jun;Lee, Hyeong-Mok;Park, Su-Jong;Matsumoto, Toshio;Cooray, Asantha
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.177-181
    • /
    • 2007
  • We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ($0.9{\sim}1.2um$) and H ($1.2{\sim}2.0um$) band with a $4{\times}4$ degree field of view to obtain the large scale structure (${\sim}3$ degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ${\sim}9\;nW\;m^{-2}\;sr^{-1}$ (I band) and ${\sim}6\;nW\;m^{-2}\;sr^{-1}$ (H band), which is appropriate to observe the large scale structure of CIRB.

Current Status and Outlook of the Space Economy (우주분야 연구개발 및 산업동향)

  • Choi, Soo-Mi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.3-13
    • /
    • 2008
  • The year 2007 marked two important anniversaries for space. The Soviet Union launched Sputnik 50 years ago on October 4. 1957. The 40th anniversary of the United Nations treaty on outer space was also marked in 2007. 2008 and 2007 were full of dramatic events of space activity as well : Success of Japan's first large lunar explorer 'KAGUYA'(SELENE) and China's 'Chang'e 1', launch of ISS laboratory module, 'Colombus' and 'Kibo', test of China's ASAT, and success of Korea's first astronaut program and so on. International government space budgets reached $78.3 billion in 2007, a strong growth rate of 36% over 2006, and the recently released Global Exploration Strategy, The Framework for Coordination is a set of guidelines for international cooperation among 14 of the world's space agencies. Worldwide space industry revenue grew by 20% over 2005, $106.1 billion in 2006 and $173.9 billion expected in 2007. This paper discusses the issues related to the Earth observation R&D trend and market in detail. Korea's 2008 government space spending is \316.4 billion, 2007 space industry revenue was $106 million. Several research projects are now underway and STSAT 2 will be launched by KSLV-1 at the Naro Space Center within this year.

  • PDF

Outer Space Activities and an Observation of Related Laws of Korea (국내 우주활동과 관련법 소고)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.2
    • /
    • pp.163-186
    • /
    • 2009
  • The missile technology and its development in south Korea have been restrained to the limit of 180 km by America which instead provided to Korea with security protection. In the same vein, America pressured South Korea to abort its nuclear weapons program so as to prevent another possible military encounter that can easily develop into a war between South and North Korea. This restraint was a bit relaxed when South Korea joined the Missile Technology Control Regime (MTCR) in 2001 whereby the limit was 300 km. The situation of South Korea is in much contrast with its neighbor, North Korea, which has fired Taepo Dong 1 and Taepo Dong 2 to put its alleged satellite respectively into the Earth orbit. The range of this rocket believed to be reaching more than 5,500 km, a range of the intercontinental ballistic missile, without any rein. South Korea that has just geared its full powers for its outer space industry, with the current space projects of putting its satellites into the low Earth orbit, will in future put its satellite into the geostationary orbit, 36,000 km above the Earth. To do so, such restraint had better be resolved. Korean space industry, as it is alike in other countries, started with putting and manufacturing sounding rockets, producing satellites but relying on foreign launching facilities, and learning launching capacities. Experiencing three time launchings of KITSAT, the current satellite projects of Korea are undertaken as follows: - Koreasat - STSAT - Komsat - MBSAT - COMS (Communication, Ocean, and Meteorological Satellite) Koreans waked up to the things of outer space in 2008 with the first Korean astronaut Li So-yeon, a lady bio systems engineer. Although the first Korean made rocket in cooperation with a Russian company to fire last August 2009 was a failure, it should be considered as an inevitable process for future endeavors. There are currently three outer space related laws of Korea: Aerospace Industry Development Promotion Act 1987, Outer Space Development Promotions Act 2005, and Space Damage Compensation Act 2008. The first two stemming from the two different ministries are, however, overlapping in many aspects and have some shortcomings to be improved.

  • PDF

SENSITIVITY CALIBRATION OF FAR-ULTRAVIOLET IMAGING SPECTROGRAPH (원자외선 분광기(FIMS)의 감도 측정)

  • Kim, I.J.;Seon, K.I.;Yuk, I.S.;Nam, U.W.;Jin, H.;Park, J.H.;Ryu, K.S.;Lee, D.H.;Han, W.;Min, K.W.;Edelstein Jerry;Korpela Eric
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2004
  • We describe the in-flight sensitivity calibration of the Far ultraviolet Imaging Spectrograph (FIMS, also known as SPEAR) onboard the first Korean science satellite, STSAT-1, which was launched in September 2003. The sensitivity calibration is based on a comparison of the FIMS observations of the hot white dwarf G191B2B, and two O-type stars Alpha-Cam, HD93521 with the HUT (Hopkins Ultraviolet Telescope) observations. The FIMS observations for the calibration targets have been conducted from November 2003 through May 2004. The effective areas calculated from the targets are compared with each other.

Validation of GPS Based Precise Orbits Using SLR Observations (레이저 거리측정(SLR) 데이터를 사용한 GPS 기반 정밀궤도결정 시스템 결과의 검증)

  • Kim, Young-Rok;Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong;Hwang, Yoo-La;Kim, Hae-Yeon;Lee, Byoung-Sun;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • In this study, the YLPODS (Yonsei Laser-ranging Precision Orbit Determination System) is developed for POD using SLR (Satellite Laser Ranging) NP (Normal Point) observations. The performance of YLPODS is tested using SLR NP observations of TOPEX/POSEIDON and CHAMP satellite. JPL's POE (Precision Orbit Ephemeris) is assumed to be true orbit, the measurement residual RMS (Root Mean Square) and the orbit accuracy (radial, along-track, cross-track) are investigated. The validation of POD using GPS (Global Positioning System) raw data is achieved by YLPODS performance and highly accurate SLR NP observations. YGPODS (Yonsei GPS-based Precision Orbit Determination System) is used for generating GPS based precise orbits for TOPEX/POSEIDON. The initial orbit for YLPODS is derived from the YGPODS results. To validate the YGPODS results the range residual of the first adjustment of YLPODS is investigated. The YLPODS results using SLR NP observations of TOPEX/POSEIDON and CHAMP satellite show that the range residual is less than 10 cm and the orbit accuracy is about 1 m level. The validation results of the YGPODS orbits using SLR NP observations of the TOPEX/POSEIDON satellite show that the range residual is less than 10 cm. This result predicts that the accuracy of this GPS based orbits is about 1m level and it is compared with JPL's POE. Thus this result presents that the YLPODS can be used for POD validation using SLR NP observations such as STSAT-2 and KOMPSAT-5.