• Title/Summary/Keyword: 과학기술위성(STSAT)

Search Result 78, Processing Time 0.022 seconds

Design and Implementation of Engineering Qualification Model of S-Band Transmitter for STSAT-3 (과학기술위성 3호 S-대역 송신기 인증모델 설계 및 제작)

  • Oh, Seung-Han;Seo, Gyu-Jae;Oh, Dae-Soo;Lee, Jung-Soo;Oh, Chi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.80-86
    • /
    • 2010
  • This paper describes the development result of S-band Transmitter of STSAT-3 by satellite research center(SaTReC), KAIST. STSAT-3 has two kinds of communication channels, S- band for Telemetry & Command and X-band for mission payload. S-band Transmiiter(STX) consist of modulator, frequency synthesizer, power amp and DC/DC converter. The modulation scheme of STX is FSK(Frequency Shift Keying). The interface between spacecraft OBC and STX is RS-422. The STX is based on modular design. The RF output power of STX is 1.5W(31.7dBm) and BER of STX is under 1E-5. The Test of STX is completed successfully such as functional Test and environmental(vibration, thermal vacuum) Test.

Protoflight Model Development of Retroreflector Array for STSAT-2 (과학기술위성2호 레이저반사경의 준비행모델 개발)

  • Lee, Sang-Hyun;Kim, Kyung-Hee;Lee, Jun-Ho;Jin, Jong-Han;Kim, Hyung-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1135-1142
    • /
    • 2007
  • STSAT-2 has an on-board satellite retroreflector array for precise orbit determination. Satellite retroreflector array reflects photon emitted from laser and uses to determine precisely the distance from ground station to satellite by the round-trip travel time of photon. The retroreflector array of protoflight model has been developed and verified through environmental tests. This paper describes the protoflight model of retroreflector array and reports environmental test results. The environmental tests of protoflight model retroreflector array were performed successfully without damage of corner cube prism occurred in engineering model development.

Implementation of SpaceWire Link Interface for STSAT-3 (과학기술위성 3호를 위한 스페이스와이어 링크 인터페이스 구현)

  • Ryu, Sang-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2010
  • SpaceWire is a standard for high-speed links and networks between spacecraft components, which was invented for better, cheaper, faster on-board data handling in spacecraft. SpaceWire is being widely used on many space missions by ESA, NASA and JAXA, and is expected to be used in future satellite development programs in Korea. For flexible and efficient application of SpaceWire, it is necessary to secure the related technologies. This paper describes the development, implementation and test of a SpaceWire link interface, which will be incorporated in MMU(Mass Memory Unit) of STSAT-3(Science & Technology Satellite-3).

Analysis on Environmental Test Specifications for Solar Panels of STSAT-2 (과학기술위성 2호 태양전지판의 환경시험 규격에 대한 고찰)

  • Jang, Tae-Seong;Kim, Hong-Bae;Woo, Sung-Hyun;Lee, Sang-Hyun;Nam, Myeong-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.957-961
    • /
    • 2005
  • A satellite component must withstand vibration caused when launch vehicle acoustics and engine rumble transfer to it through its structural mount. Components shall be subjected to environmental tests after manufacturing process thus the environmental test conditions are needed for component level test including vibration and shock. This paper deals with derivation of component-level environmental test specifications, especially for solar panels of STSAT-2(Science & Technology SATellite-2). Sine sweep random vibration, and shock test conditions were generated for solar panels by assuming the satellite as single-degree-of-freedom system with a base excitation.

  • PDF

SEU Mitigation Strategy and Analysis on the Mass Memory of the STSAT-3 (과학기술위성 3호 대용량 메모리에서의 SEU 극복 및 확률 해석)

  • Kwak, Seong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.35-41
    • /
    • 2008
  • When memory devices are exposed to a space environment. they suffer various effects such as SEU(Single Event Upset). For these reasons, memory systems for space applications are generally equipped with error detection and correction(EDAC) logics against SEUs. In this paper, the error detection and correction strategy in the Mass Memory Unit(MMU) of the STSAT-3 is discussed. The probability equation of un-recoverable SEUs in the mass memory system is derived when the whole memory is encoded and decoded by the RS(10,8) Reed-Solomon code. Also the probability value is analyzed for various occurrence rates of SEUs which the STSAT-3 possibly suffers. The analyzed results can be used to determine the period of scrubbing the whole memory, which is one of the important parameters in the design of the MMU.

Algorithm to cope with SEUs(Single Event Upsets) on STSAT-1 OBC(On-board Computer) (과학기술위성 1호 탑재 컴퓨터(On-board Computer)에서의 SEUs(Single Event Upsets) 극복 알고리즘)

  • Chung, Sung-In;Park, Hong-Young;Lee, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.10-16
    • /
    • 2008
  • Generally, the satellite circling round in a low orbit goes through Van Allen belt connecting with the magnetic fold, in which electronic components are easily damaged and shortened by charged particles moving in a cycle between the South Pole and the North Pole. In particular, Single Event Upset(SEU) by radiation could cause electronic device on satellite to malfunction. Based on the idea mentioned above, this study considersabout SEU effect on the On-board Computer(OBC) of STSAT-1 in the space environment radiation, and shows algorithm to cope with SEUs. In this experiment, it also is shown that the repetitive memory read/write operation called memory wash is needed to prevent the accumulation of SEUs and the choice for the period of memory wash is examined. In conclusion, it is expected that this research not only contributes to understand low capacity of On-board Computer(OBC) on Low Earth Orbit satellite(LEOS) and SaTReC Technology satellite(STSAT) series, but also makes good use of each module development of Korea Multi-Purpose Satellite(COMPSAT) series.

The Analysis of Mechanical Environment of Small Satellite Launcher (소형위성 발사체의 기계적 환경 분석)

  • Lee, Sung-Sae;Park, Jong-Oh;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • Science and Technology SATellite-3 (STSAT-3) is science purpose satellite which weighs below 170kg. This is classified as small satellite or micro satellite more specifically. The launch vehicles (launchers) for small satellite has their own requirements for environmental interface. Since the small satellites are usually launched with cluster or multiple payloads, the selection option for appropriate launcher is limited. Therefore, the satellite should be designed with the consideration of environmental requirements of these launchers. In this paper, the environmental requirement of most candidated launchers for small satellite is summarized and give satellite environmental requirement to accommodate all launchers requirements.

The Conceptual Design of Mass Memory Unit for High Speed Data Processing in the STSAT-3 (고속 데이터 처리를 위한 과학기술위성 3호 대용량 메모리 유닛의 개념 설계)

  • Seo, In-Ho;Oh, Dae-Soo;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.389-394
    • /
    • 2010
  • This paper describes the conceptual design of mass memory unit for high speed data processing and mass memory management in the STSAT-3 compared to that of STSAT-2. The FPGA directly controls the data receiving from two payloads with the maximum 100Mbps speed and 32Gb mass memory management to satisfy these requirements. We used SRAM-based FPGA from XILINX having fast operating speed and large logic cells. Therefore, the Triple Modular Redundancy(TMR) and configuration memory scrubbing techniques will also be used to protect FPGA from Single Event Upset(SEU) in space.

Engineering Qualification Model Design and Implementation of Mass Memory Unit for STSAT-3 (과학기술위성 3호 대용량 메모리 유닛의 인증모델 설계 및 구현)

  • Seo, In-Ho;Oh, Dae-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1258-1263
    • /
    • 2009
  • This paper describes the design and test results of engineering qualification model(EQM) of mass memory unit(MMU) for STSAT-3. The MMU for STSAT-3 having 32Gb mass memory capacity is capable of receiving and transmitting the mission data from MIRIS(Multi-purpose IR Imaging System) and COMIS(Compact Imaging Spectrometer) at 100Mbps and 10Mbps. The performance of EQM MMU was verified by the tests of data receiving from two payloads and data transmission to the data receiving system. Moreover, the vibration and thermal vacuum test was performed to verify the launch vehicle and space environments.