• Title/Summary/Keyword: 과학기술위성(STSAT)

Search Result 78, Processing Time 0.02 seconds

Development of a Laser Reflector Array for STSAT2 (과학기술위성2호 레이저 반사경 조합 개발)

  • Lee, Jun-Ho;Kim, Seung-Bum;Lee, Sang-Hyun;Kim, Kyung-Hee;Im, Yong-Jo;Nam, Myung-Ryong;Lim, Jong-Tae;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.142-147
    • /
    • 2004
  • Satellite laser ranging (SLR), which is the most accurate geodetic method for precise orbit determination of artificial satellites, will be used to determine the precise orbit of STSAT2. This paper will present the development of a Laser Reflector Array (LRA) of STSAT2. Currently one LRA was designed, analyzed, manufactured, optically tested and assembled.

Power Budget Analysis for STSAT-2 According to the Operation Mode (운용모드에 따른 과학기술위성2호의 전력 수요예측 분석)

  • Shin, Goo-Hwan;Nam, Myeong-Ryong;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.93-98
    • /
    • 2005
  • STSAT-2 will be launched on December 2007 by the first Korean launch vehicle KSLV-1, and its one of the main instruments is DREAM (Dual Channel Radio Frequency and Environment Atmosphere Monitoring) which detects a signal for atmosphere from the Earth by using micro-wave signal. The STSAT-2 has many units for technology demonstration such as FDSS (Fine Digital Sun Sensor) and DHST (Dual Head Star Tracker) including PPT (Pulsed Plasma Thruster) for attitude control and momentum dumping in the space. In this paper, the power budget analysis for STSAT-2 will be studied and provided for supporting the whole mission life time during the mission of its spacecraft.

TIME SYNCHRONIZATION STRATEGY BETWEEN ON-BOARD COMPUTER AND FIMS ON STSAT-1 (과학기술위성 1호 탑재 컴퓨터와 탑재체 FIMS의 시간 동기화 기법)

  • 곽성우;박홍영
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 2004
  • STSAT-1 was launched on sep. 2003 with the main payload of Far Ultra-violet Imaging Spectrograph(FIMS). The mission of FIMS is to observe universe and aurora. In this paper, we suggest a simple and reliable strategy adopted in STSAT-1 to synchronize time between On-board Computer(OBC) and FIMS. For the characteristics of STSAT-1, this strategy is devised to maintain reliability of satellite system and to reduce implementation cost by using minimized electronic circuits. We suggested two methods with different synchronization resolutions to cope with unexpected faults in space. The backup method with low resolution can be activated when the main has some problems.

Engineering Qualification Model Development of S-band Receiver for STSAT-3 (과학기술위성 3호 S 대역 수신기 기술인증모델 개발)

  • Lee, Jung-Su;Oh, Seung-Han;Seo, Gyu-Jae;Oh, Chi-Wook;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.609-614
    • /
    • 2009
  • The TT&C communication subsystem of STSAT-3 is consisted of communication link to send telemetry data of spacecraft to the ground station and receive command data from ground station. The S-band receiver is used to receive command data from ground station, Engineering Qualification Model of S-band receiver has been designed and manufactured. The Designed S-band Receiver uses a single conversion for a simple frequency conversion, including a DC-DC Converter and EMI Filter. Also, Digital demodulation part designed using FPGA and RS-422 data interface. The performance of S-band Receiver in functional and space environments test satisfies the requirements of STSAT-3.

Performance Test of Paylad Data Receiving Equipment for STSAT-2 (과학기술위성 2호 탑재체데이터 수신시스템의 성능 시험)

  • Lee, Jong-Ju;Seo, In-Ho;Lee, Chol;Oh, Chi-Wook;Kim, Kyung-Hee;Park, Sung-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.347-352
    • /
    • 2007
  • This paper describes the design and implementation of PFM(Proto Flight Model, PFM) of DRE(Data Receiving Equipment, DRE) for Science and Technology Satellite 2(STSAT-2) and the results of integration performance test. DRE components are X-band receiver, DCE(Data Combine Equipment, DCE) and RAC(Receiving and Archiving Computer, RAC). DCE consists of I&Q data combiner and ECL signal distributor. RAC consists of DRC(Data Receiving Card) and ST2RAS(STSAT-2 Receiving and Archinving Software). X-band receiver receives 10Mbps QPSK I, Q satellite data and sends the data to DCE. DRC stores the I&Q combine data from DCE to RAID. The pre-processing program sorts and stores to satellite status data and payload data. The performance of DRE in the functional and space environments test satisfies the requirements of STSAT-2.

Design, Implementation and Test of Flight Model of X-Band Transmitter for STSAT-3 (과학기술위성 3호 X-대역 송신기 비행모델 설계, 제작 및 시험)

  • Seo, Gyu-Jae;Lee, Jung-Soo;Oh, Chi-Wook;Oh, Seung-Han;Chae, Jang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.461-466
    • /
    • 2012
  • This paper describes the development and test result of X-band Transmitter flight model(FM) of STSAT-3 by satellite research center(SaTReC), KAIST. The communication sub-system of STSAT-3 is consist of two different frequency band channels. S-band frequency is used for Telemetry & Command, and X-band frequency is used for mission data. Payload observations data in Mass Memory Unit (MMU) is modulated by QPSK modulator in X-band Transmitter, and then QPSK modulation signal is transmitted to antenna through transfer switch. In this Paper, we described the results of modulation, low-pass filter design, power amp development, and switch test. The FM XTU is delivered Spacecraft Assembly, Integration and Test(AIT) level through the completion of functional Test and environmental(vibration, thermal vacuum) Test successfully.

STSAT-3 Hall Thruster Propulsion System Development (과학기술위성 3호 홀추력기 추진계 개발)

  • Cho, Hee-Keun;Ryu, Kwang-Sun;Cha, Won-Ho;Lee, Jong-Sup;Seo, Mi-Hee;Choi, Won-Ho;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.834-841
    • /
    • 2010
  • The STSAT-3 (science and technology satellite) is the first satellite whose entire structure was made of composite materials in Korea and it will be launched later in 2011. As like other small satellites, it is also equipped with several advanced instruments whose major objectives focused on the scientific tests in space. The HPS (hall thruster propulsion system) using xenon gas as a propellant has been developed and its overall ground tests were conducted. This research emphasizes on the technologies and procedure applied to the development of the entire HPS and its function and environment tests.

Fine Digital Sun Sensor Design and Analysis for STSAT-2 (과학기술위성 2호(STSAT-2)의 고 정밀 디지털 태양센서(FDSS) 설계 및 분석)

  • Rhee, Sung-Ho;Jang, Tae-Seong;Kim, Sae-Il;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.93-97
    • /
    • 2005
  • We have developed the FDSS (Fine Digital Sun Sensor) for the space technology of the STSAT-2 (Seience & Technology Satellite 2). The FDSS is firstly developed by using CMOS image sensor(CIS) in South Korea. The FDSS consists of the optics part, FPGA(Field Programable Gate Array) part, and MCU(Micro controller unit)part. This paper will focus on the optical characteristics of the optics part and describe the configuration of FDSS with the design of aperture. We also analyze the characteristic of optics about the pixel of the CMOS image sensor.

Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program (소형 복합재 위성 구조체 개발)

  • Cho, Hee-Keun;Seo, Jung-Ki;Kim, Byoung-Jung;Jang, Tae-Seung;Cha, Won-Ho;Lee, Dai-Gil;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.727-736
    • /
    • 2010
  • A satellite that has an all-composite structure, STSAT-3(science and technology satellite), was initially developed in Korea. Partially use of advanced composites in space applications such as solar panel is well developed, however the application of an all-composite satellite bus has never been achieved in Korea. This study emphasizes the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small-class satellite STSAT-3. Moreover its structure design concept is totally different from the one that was used in the previous satellites developed in Korea.

Study on Power Analysis and Test Verification for STSAT-2 Solar Array (과학기술위성 2호 태양전지 배열기의 전력 성능 분석 및 시험 검증 연구)

  • Park, Je-Hong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.507-517
    • /
    • 2010
  • The KOREAN AIR - R&D Center has developed a solar array for STSAT-2 Flight Model, SaTReC-KAIST, using a fully localized technology and has verified the performance through a launch vibration test, orbit environment test and electrical performance test. The solar array will be launched at NARO Space Center by KSLV-I which is the first Korean launch vehicle, in May 2010. In this paper, a current-voltage curve that shows the power characteristics of solar arrays was derived by applying elements that affects the power performance of STSAT-2's solar arrays to the solar cell equivalent models. The result was compared to LAPSS test results, and accuracy of the solar cell equivalent model and the power performance simulation has been analyzed.