• Title/Summary/Keyword: 과증식증

Search Result 165, Processing Time 0.039 seconds

Physiological Effect of Korean Black Soybean Pigment (한국산 검정콩 색소의 생리활성효과)

  • Son, Jun-Ho;Choung, Myoung-Gun;Choi, Hee-Jin;Jang, Un-Bin;Son, Gyu-Mok;Byun, Myung-Woo;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.764-768
    • /
    • 2001
  • Physiological effects of Korean black soybean pigment were investigated. Major anthocyanin pigments of Korean black soybean were extracted with 1% HCl for 24 hours at $4^{\circ}C$. Inhibitory effects of angiotensin converting enzyme ($IC_{50}$) were 0.22 mg/mL (Kumjungkong #1), 0.28 mg/mL (Ilpumkumjungkong) and 0.38 mg/mL (Milyang #95). Inhibitory effects xanthine oxidase ($IC_{50}$) were 0.118 mg/mL (Kumjungkong #1), 0.165 mg/mL (Ilpumkumjungkong) and 0.163 mg/mL (Milyang #95). The cPLA2 inhibitory effects ($IC_{50}$) were $19.7\;{\mu}g/mL$, $10.7\;{\mu}g/mL$ and $25.3\;{\mu}g/mL$. The cytotoxic effects of anthocyanins from Milyang #95 were 66.0% against human colon cell line (HT29), 58.2% against human liver cell line (HepG2) and 64.4% against mouse liver cell line (Hepa), respectively.

  • PDF

Evaluation of Biological Activity in Pepper (Capsicum annuum L.) Breeding Lines (육성계통에 따른 고추의 생리활성 평가)

  • Jung, Mi-Ri;Hwang, Young;Kim, Hae-Young;Cho, Myeong-Cheoul;Hwang, In-Guk;Yoo, Seon-Mi;Jeong, Heon-Sang;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.642-648
    • /
    • 2011
  • The purpose of this study was to determine the capsaicinoid and antioxidant compounds and to evaluate the biological activity of 40 different pepper (Capsicum annuum L.) breeding lines. Capsaicinoid and ascorbic acid content were measured with HPLC. Total polyphenolic and flavonoid contents and antioxidant activity were measured with spectrophotometric methods. The antiproliferative qualities of the samples against human breast tumor cells (MCF7) were assessed with a MTT assay. The nitric oxide content in the culture media was measured to evaluate the anti-inflammatory qualities of the samples using Raw264.7 macrophages. The capsaicinoid, ascorbic acid, polyphenolic and flavonoid content of the 40 pepper breeding lines were 0.1~204.2 mg/100 g (dry weight basis, DWB), 279.1~1695.5 mg/g (DWB), 2.6~10.2 mg/g (DWB), and 1.4~5.7 mg/g (DWB), respectively. The highest antioxidant, antiproliferative, and anti-inflammatory qualities were found in breeding line numbers 2500, 3201, and 3232, respectively. This study provides basic information useful to plant breeders and biotechnologists who are planning to breed pepper genotypes with high phytochemical content.

Biological Activities of Magnolia denudata Desr. Flower Extracts (목련(Magnolia denudata Desr.) 꽃 추출물의 생리활성)

  • Nho, Jin-Woo;Hwang, In-Guk;Joung, Eun-Mi;Kim, Hyun-Young;Chang, Seong-Jun;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1478-1484
    • /
    • 2009
  • The antioxidant, antiproliferation, and nitrate synthesis inhibitory effects of Magnolia denudata extracts (ME) were evaluated. The ME was extracted with 70% (v/v) ethanol and fractionated with solvents of hexane, chloroform, ethyl acetate, n-buthanol and aqueous. The ethyl acetate fraction contained the highest phenolic and flavonoid contents of 427.10 mg garlic acid eq/g and 356.05 mg catechin eq/g, respectively. The ethyl acetate fraction showed strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity with a 50% inhibition concentration ($IC_{50}$) of 0.20 mg/mL and total antioxidant activity was 0.90 mg AA eq/100 mg. From the results of cytotoxic effects of HCT116, NCL-H460, and HepG2 human cancer cells by MTT assay on the ME and its solvent fraction, chloroform fraction showed the highest cytotoxic effect ($IC_{50}$ value: 0.14, 0.37, and 0.41 mg/mL, respectively). Nitrate synthesis inhibitory effect of ME and its solvent fractions on nitric oxide synthase activity in LPS stimulated RAW 264.7 cells were decreased in dose-dependent manners, and $IC_{50}$ value of hexane and chloroform fractions were 0.39 and 0.49 mg/mL, respectively.

Effect of Alliin on Vascular Functions (혈관 생리 활성에 미치는 alliin의 효능)

  • Seo, Jeong-Hwa;Kim, Jeong-Min;Ahn, Sun-Young;Cho, Jin-Gu;Kim, Jong-Min;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.976-982
    • /
    • 2009
  • Little is known about the cardiovascular roles of alliin, a functional component in garlic that has been used as food material. Thus, we examined a broad range of cardiovascular activities of alliin in this study. From our in vitro experiments, alliin was determined to act as a stimulant to induce endothelial cell proliferation and endothelial cell migration. Since endothelial cell proliferation and migration are highly associated with angiogenesis and wound healing, alliin is suggested as a regulator to control angiogenesis and wound healing. In addition, alliin was elucidated to prevent lipopolysaccharide (LPS)-induced adhesion of THP-1 leukocytes to endothelial cells and LPS-induced homotypic THP-1 cell aggregation. These inhibitory effects indicate that alliin is likely to act as an anti-atherosclerotic and anti-thrombotic factor, because leukocytic adhesion to endothelial cells and homotypic leukocyte aggregation are highly associated with atherosclerosis and thrombosis, respectively. Our additional findings show that alliin has no effect on the production of nitric oxide (NO), an important vasoregulator. In conclusion, alliin is suggested as a regulator for controlling various cardiovascular functions.

Apoptotic Effect of Sasa quelpaertensis Nakai in Human Colon Cancer HT-29 Cells (인간 대장암 HT-29 세포에서 제주조릿대의 세포사멸 효과)

  • Byun, Ji Hee;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.1012-1018
    • /
    • 2014
  • Sasa quelpaertensis Nakai (Korean name, Jeju-Joritdae) is one of the most abundant plants on Mt. Halla, Jeju Island, and it has long been used in traditional medicines. Recent studies have reported it as possessing various beneficial functions, including anti-inflammatory, anti-diabetic, anti-hypertension, anti-gastritis, anti-oxidant, and anti-cancer effects. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated. In this study, we investigated the anti-cancer effects and mechanism of S. quelpaertensis on human colon cancer HT-29 cells. Cell growth inhibition by S. quelpaertensis was determined by MTT assay. Apoptosis was performed by DNA fragmentation, flow cytometry with propidium iodide staining (PI), and reverse transcription-polymerase chain reaction (RT-PCR) to confirm the anti-apoptotic factors, such as inhibitor of apoptosis (IAP) family members. $NO^{\bullet}$ production was determined by Griess assay. S. quelpaertensis treatment resulted in the time- and dose-dependent inhibition of the cell viability of HT-29 cells by inducing apoptosis, as evidenced by the accumulation of the sub-G1 cell population stained by PI, as well as the ladder-like DNA fragmentation in a dose-dependent manner. S. quelpaertensis-inducing apoptosis was accompanied by the induction of S cell cycle arrests, increasing $NO^{\bullet}$ concentrations, and the down-regulation of IAPs, including X-chromosome-linked IAP (XIAP), cellular IAP-1 (cIAP-1), cIAP-2, and survivin. Taken together, these findings have important implications for future clinical developments of S. quelpaertensis in colon cancer treatment.

Risk assessment on cytotoxicity for benzimidazole fungicides (Benzimidazole계 살균제의 세포독성 평가)

  • Lee, Je-Bong;Sung, Pil-Nam;Jeong, Mi-Hye;Shin, Jin-Sup;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.198-206
    • /
    • 2003
  • To assess potential risk of the benzimidazole fungicides, their cytotoxicities were evaluated. Activities of LDH(Lactic dehydrogenase) in the culture fluid of CHL(chinese hamster lung) fiberoblast cell treated with 4.0, 16.0 or $32.0{\mu}g/mL$ of carbendazim for 24 hours were elevated 2.16, 2.94 and 2.64 folds compared to the control, respectively. DNA synthesis was inhibited by 45% at $2.0{\mu}g/mL$ of carbendazim. Benzimidazole fungicides showed high toxicity to cell and mitochondria of CHL cell by Giemsa and MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) assay. $IC_{50}$ by the Giemsa assay of thiophanate-methyl, benomyl, carbendazim and captafol were over 125, 1.2, 30.0 and $0.3{\mu}g/mL$, respectively. $IC_{50}$ by the MTT assay of thiophanate-methyl, benomyl, carbendazim and captafol were over 125, 18.7, 20.4 and $2.6{\mu}g/mL$, respectively. Inhibitory concentration of cell median proliferation by SRB (sulforhodamin B) assay for thiophanate-methyl, carbendazim, benomyl, and captafol were 17.4, 5.3, 1.5 and $0.5{\mu}g/mL$, respectively. Accordingly, benzimidazole fungicides inhibited DNA synthesis, mitochondrial function, cell proliferation and induced cell necrosis.

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

EGCG induces Apoptosis under Hypoxic State in B16F10 Melanoma Cancer Cells (저산소증 상태에서 B16F10 피부암 세포에 EGCG를 처리하였을 때의 apoptosis 효과)

  • Kim, Yoon-Yi;Kim, In-Seop;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.251-256
    • /
    • 2011
  • EGCG, catechins in green tea, is a kind of phytochemical. Through the regulation of signal pathways, EGCG has been known to show anti-oxidant and anti-tumor effects in cells. In this study, we investigated the apoptotic effects of EGCG through AMP-activated protein kinase (AMPK) signal pathways, including hypoxia inducible factor-1 alpha (HIF-$1{\alpha}$). The experiments were performed in B16F10 melanoma cells in a hypoxic state. AMPK is activated by ATP consumption such as nutrient deficiency, exercise, heat shock, etc. The activated AMPK that plays an important role as an energy sensor inhibits proliferation of cancer cells, as well as inducing apoptosis. HIF-$1{\alpha}$, the primary transcriptional regulator of the response to oxygen deprivation, plays a critical role in modulating tumor growth and angiogenesis in a hypoxic state. The apoptotic effects of EGCG were studied in B16F10 cells in a hypoxic state. The results show that EGCG inhibits the transcriptional activity of HIF-$1{\alpha}$ and induces apoptosis. These observations suggest that EGCG may exert inhibitory effects of angiogenesis and control tumor cell growth in hypoxic melanoma cells.

Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells (전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과)

  • Kim, Mun-Hyeon;Kim, Mi-Hyun;Park, Young-Ja;Chang, Young-Chae;Park, Yoon-Yub;Song, Hyun-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • Delphinidin is a blue-red pigment and one of the major anthocyanins in plants. It plays an important role in anti-oxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. In this study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) gene expression, an important factor involved in angiogenesis and tumor progression in human prostate cancer. Delphinidin decreased levels of epidermal growth factor (EGF)-induced VEGF mRNA expression in PC-3M cells. The expression of the EGF-induced hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and signaling transducer and activator of transcription 3 (STAT3) proteins, which are the major transcription factors for VEGF, were inhibited by delphinidin. In addition, delphinidin decreases HRE-promoter reporter gene activity, suggesting that delphinidin can suppress the transcription of HIF-$1{\alpha}$ under EGF induction, leading to a decrease in the expression of VEGF. Delphinidin specifically suppressed the phosphorylation of Akt, p70S6K, and 4EBP1, but not the phosphorylation of EGFR. Therefore, our results suggest that delphinidin may inhibit human prostate cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$, STAT3 and VEGF gene expression.

Yangkyuksanhwa-Tang Attenuates Ischemic Brain Injury in a Focal Photothrombosis Stroke Model (뇌허혈 마우스모델에서 양격산화탕이 뇌 손상 완화에 미치는 효과)

  • Han, Do-Kyung;Pak, Malk-Eun;Kwon, Ok-Sun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1258-1266
    • /
    • 2019
  • Yangkyuksanhwa-Tang (YKSH), consisting of nine different herbs, is commonly used in Soyangin-type individuals with stroke, based on the Sasang Constitution Theory in Korea. However, no evidence has yet confirmed a beneficial effect of YKSH in ischemic stroke treatment. In this study, we investigated the effects of YKSH on ischemic brain injury in a mouse model of cerebral ischemia. Focal cerebral ischemia in mice was induced by photothrombosis, and behavioral recovery was evaluated. Infarct volume, inflammation, and newly generated cells were evaluated by histology and immunochemistry. YKSH treatment resulted in a significant recovery from the motor impairments induced by focal cerebral ischemia, as determined with wire grip and rotarod tests. YKSH treatment also decreased the infarct volume and the number of cells positive for tumor necrosis factor-${\alpha}$ and myeloperoxidase when compared with a vehicle-treated control group. By contrast, YKSH treatment considerably increased the number of cells positive for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1, as well as the number of cells doubly positive for Ki67/doublecortin when compared with the vehicle-treated group. These results suggest that YKSH treatment attenuated the infarct size by anti-inflammatory action, astrocyte and microglia activation, and neuronal proliferation, thereby facilitating neurofunctional recovery from a cerebral ischemic assault. YKSH could therefore be a potential treatment for neurofunctional restoration of the injured brains of patients with stroke.