• Title/Summary/Keyword: 과열온도

Search Result 161, Processing Time 0.026 seconds

An Experimental And Theoretical Study on the Corrugated Water-Trickle Collector (파형단면을 가진 유하식 집열기의 이론 및 실험 연구)

  • Lee, Jong-Ho;Chung, Mo;Park, Won-Hoon
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.42-52
    • /
    • 1987
  • 파형 단면을 가진 유하식 집열기의 이론 및 실험 결과로서 유량, 각도등 집열성능에 미치는 영향등이 고려되었다. 입구 온도와 출구온도 차이가 적을 경우에는 이론과 실험치가 잘 맞으나 온도차이가 많을 경우 혹은 입구온도가 높을 때에는 투과체안에 생기는 결로 및 수증기의 영향으로 편차가 커진다. 개방회로와 폐쇄회로의 경우를 구분하여 실험되었는데 개방회로의 경우 효율은 약간 저하되지만 전반적인 성능은 폐쇄회로와 같은 경향을 나타내었다. 개방회로는 과열을 막는 방편으로 이용될 수 있다.

  • PDF

An experimental study on the fire hazard of Sheath Heater (시즈히터의 화재위험성에 관한 실험 연구)

  • Kim, Hakjoong
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.511-517
    • /
    • 2014
  • Recently, the fire by sheath heater has been occurred frequently on winter season. The sheath heater has simple internal structure and boils water simply. Therefore, the use of sheath heater has been increased. In this study, found the fire hazard property of sheath heater from understanding the fire mechanism through the experiment to get the measure for decreasing the occurrence of fire. For the analysis of the fire hazard property of the sheath heater, performed the test of temperature change and ignition temperature by using current product. On the result of test, the sheath heaters are the most dangerous appliance to arise fire. Water temperature controller attached to sheath heater is not sufficient to prevent overheating it. The sheath heater should have level switch of water and temperature controller for heater itself to shut off the power supply. Because the cause of fire by sheath heater is overheating itself in the situation of lack water.

A study on the development of constant temperature hot wire type air flow meter for automobiles (자동차용 정온도 열선식 공기유량계의 개발에 관한 연구)

  • 조성권;유정열;고상근;김동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2407-2414
    • /
    • 1992
  • Constant temperature hot wire air flow meter for automobiles requires temperature compensation system because hot wire output signal is sensitive to ambient temperature variations as well as fluid velocity. The objectives of the present study are to design an air flow meter circuit which is capable of compensating the hot wire output signal for ambient temperature variations and to investigate the mechanism of such temperature compensation. This circuit is composed of platinum hot wire, platinum resistor, two variable resistors, a constant resistor and a DC-amplifier. In particular, by simply replacing a constant resistor in one of the bridge arms of the conventional circuit with platinum resistor and a variable resistor for the purpose of temperature compensation, the deviation of output signal with respect to ambient temperature variations between 27deg. C 70deg. C could be reduced to less than 2.5% for mass flow rate and to less than 5% for velocity respectively. The mechanism of temperature compensation against ambient temperature variations was explained by means of measuring the heat transfer coefficient with hot wire temperature variations and analyzing and analyzing conventional empirical equations qualitatively.

정온도형 열선유속계의 오차해석과 그 응용

  • 고상근
    • Journal of the KSME
    • /
    • v.31 no.6
    • /
    • pp.512-518
    • /
    • 1991
  • TSI IFA 100 Thermal anemometer와 같이 자동화된 유속계라 할지라도, 사용자가 조정해야 하는 과열비, 인덕턴스 등과 같은 인자가 있다. 이와 같은 조정의 문제 외에도 오차를 고려해야 하는 많은 요소가 있다. 이들 중 주위 유체의 온도 변화에 대한 영향 등에 깊은 이해를 가지고 있어야 정밀계측을 가능하게 할 것이다. 그 예로서 자동차에서 사용되는 정온도형 열선유속계 형의 공기유량계는 주위온도 보상을 위한 회로가 내장되어 동절기와 하절기 사이의 온도차를 보상하고 있다.

  • PDF

The Effect of Superheated Steam Cooking Condition on Physico-Chemical and Sensory Characteristics of Chicken Breast Fillets (과열증기 처리조건에 따른 닭 가슴살의 물리·화학적 및 관능 특성)

  • Oh, Ji-Hye;Yoon, Sun;Choi, Yoon
    • Korean journal of food and cookery science
    • /
    • v.30 no.3
    • /
    • pp.317-324
    • /
    • 2014
  • This study attempted to investigate the optimum cooking conditions of chicken breast fillets employing the superheated steam (SHS). The effects of SHS cooking conditions on the physico-chemical and sensory properties of chicken breast fillets were studied. Chicken breast fillets for SHS cooking were treated in six different combinations of steam temperature ($330^{\circ}C$ or $350^{\circ}C$) and cooking time (6, 8 and 10 min). As a result, when the chicken breast fillets were cooked for 8min at $330^{\circ}C$ and 6 min at $350^{\circ}C$ steam, the internal temperature of the chicken breast fillets reached $75{\sim}76^{\circ}C$. At that cooking condition, the chicken breast fillets demonstrated lower cooking loss, higher moisture content, lower hardness and fracturability, and higher springiness; further, they had more acceptable sensory properties compared to the other SHS conditions and conventional electric oven cooking (control). These results suggest that the application of SHS technology to chicken breast fillet products can reduce the cooking time and cooking loss; moreover, it can produce highly preferred chicken products compared to conventional electric oven cooking.

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.

Analysis on the Heat Exchange Efficiency of Kraft Recovery Boiler by Nose Arch Structure Using CFD (CFD를 활용한 크래프트 회수보일러 내부 노즈 아치 구조에 따른 열교환 효율 분석)

  • Jang, Yongho;Park, Hyundo;Lim, Kyung pil;Park, Hansin;Kim, Junghwan;Cho, Hyungtae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • A kraft recovery boiler produces steam for power generation by the combustion of black liquor from the kraft pulping process. Since saturated steam became superheated in a superheater above the furnace, it is important to increase the heat exchange efficiency for the superheated steam production and power generation. A nose arch at the bottom of the superheater is important for blocking radiation from the furnace which causes corrosion of the superheater. But the nose arch is the main reason for creating a recirculation region and then decreasing the heat exchange efficiency by holding cold flue gas after the heat transfer to saturated steam. In this study, the size of recirculation region and the temperature of flue gas at the outlet were analyzed by the nose arch structure using computational fluid dynamics (CFD). As a result, when the nose arch angle changed from 106.5° (case 1) to 150° (case4), the recirculation region of flue gas decreased and the heat exchange efficiency between the flue gas and the steam increased by 10.3%.

Function approximation of steam table using the neural networks (신경회로망을 이용한 증기표의 함수근사)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.459-466
    • /
    • 2006
  • Numerical values of thermodynamic properties such as temperature, pressure, dryness, volume, enthalpy and entropy are required in numerical analysis on evaluating the thermal performance. But the steam table itself cannot be used without modelling. From this point of view the neural network with function approximation characteristics can be an alternative. the multi-layer neural networks were made for saturated vapor region and superheated vapor region separately. For saturated vapor region the neural network consists of one input layer with 1 node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. For superheated vapor region it consists of one input layer with 2 nodes, two hidden layers with 15 and 25 nodes each and one output layer with 3 nodes. The proposed model gives very successful results with ${\pm}0.005%$ of percentage error for temperature, enthalpy and entropy and ${\pm}0.025%$ for pressure and specific volume. From these successful results, it is confirmed that the neural networks could be powerful method in function approximation of the steam table.

소형펀치시험법에 의한 발전용 증기관의 경년재질열화 평가에 의한 연구

  • 김정기;이종기;윤기봉;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1665-1673
    • /
    • 1991
  • 본 연구에서는 운전이력이 다른 보일러 과열기 및 재열기에서 수취한 Cr-Mo강 증기관을 대상으로 이 SP 시험법을 도입하여 SP시험에 의한 재질열화의 평가 가능성을 연구 검토하였다.

Research on Overheating Prediction Methods for Truck Braking Systems (화물차의 제동장치에서 발생하는 과열 예측방안 연구)

  • Beom Seok Chae;Young Jin Kim;Hyung Jin Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.54-61
    • /
    • 2024
  • Recently, due to the increase in domestic and international online e-commerce platforms and the increase in container traffic at domestic ports, the operating ratio of large trucks has increased, and the number of truck fires is continuously increasing. In particular, spontaneous combustion is the most common cause of truck fires. Various academic approaches have been attempted to prevent truck fires, but due to the lack of research on the spontaneous tire ignition phenomenon that occurs during braking, this research directly designed and manufactured an experimental device to establish an environment similar to the braking system of a truck. A non-contact temperature sensor was installed on the brake device of the experimental device to collect temperature data generated from the brake device. Based on the data collected from the temperature sensor of the brake device and the temperature sensor on the tire surface, the ARIMA model among the time series prediction models was used to Appropriate parameters were selected to suit the temperature change trend, and as a result of comparing and analyzing the measured and predicted data, an accuracy of over 90% was obtained. Based on this, a plan was proposed to reduce the rate of fires in trucks by providing real-time warnings and support for truck drivers to respond to overheating phenomena occurring in the braking system.