• Title/Summary/Keyword: 과소 팽창비

Search Result 26, Processing Time 0.022 seconds

Adiabatic wall temperature distribution on a plate as under-expanded ratio and impinging angle (과소팽창비와 경사각에 따른 평판에서의 단열벽면온도분포)

  • Sun Yu Man;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan;Lee Jang Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.113-118
    • /
    • 2004
  • Experiments are conducted to get basic information of under-expanded impinging jet in the near field. Experimental parameters are impinging angle and under-expanded ratio. As the under-expanded ratio increases, the maximum surface pressure decreases and the reducing effect of recovery factor increases. As the impinging angle decreases, the peak of surface pressure is displaced slightly from the geometric center of the plate to the upward region and the cooling region is expanded in the downward region, whereas it is contracted in the upward region.

  • PDF

A Study on the heat transfer characteristics of a normal axisymmetric under-expanded impinging jet on a surface (수직 축대칭 과소팽창 충돌 제트의 표면 열전달 특성 연구)

  • Yu, Man-Sun;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.84-91
    • /
    • 2005
  • An experimental investigation has been carried out to examine heat-transfer characteristics of an axisymmetric, under-expanded, sonic jet impinging on a flat plate and the local measurement of surface pressures and heat transfer coefficients on a plate have been achieved together with a visualization test of shock structure in a jet. Heat transfer coefficients on a plate have been found to be changed significantly depending on the under-expansion ratio as much as the nozzle-to-plate distance. These phenomena could be explained by the wall pressure measurement and the shock visualization.

Numerical Simulation of Axisymmetric Supersonic let Impingement on a Flat Plate (수직평판에 충돌하는 축대칭 초음속 제트의 수치 연구)

  • 신완순;이택상;박종호;김윤곤;심우건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 2000
  • When supersonic underexpanded jets are exhausted from the nozzle, complex shock cell configurations such as barrel shock, expansion fan, Mach disc, and exhaust-gas jet boundary are appeared repetitively. The shock cell is smeared by turbulence dissipation and disappeared in long distance from the nozzle. When underexpanded jet is suddenly impinged on a flat plate, it forms very complex flow structure. In this paper, we solve compressible Wavier-Stokes equation adapting finite volume method to obtain jet impingement flow structure and compare calculated data with experimental ones. It is shown that numerical simulation data are in good agreement with experimental one in a short distance between nozzle exit and flat plate and little influence of underexpanded ratio is appeared in jet impingement now distribution.

  • PDF

Measurement of Adiabatic Wall Temperature on an Impinging Surface by Under-expanded Jet (과소팽창된 충돌제트에 의한 단열벽면 온도 측정)

  • Yu, Man-Sun;Lee, Jang-Woo;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • An experimental investigation for impingement of under-expanded, axisymmetric jets on a flat plate has been conducted, and the surface pressure, the adiabatic wall temperature distributions on the plate have been measured in detail. For the explanation on the wall temperature distributions, the total temperature distributions along a free jet have also been measured with total temperature probes. In this study, the under-expansion ratio and the nozzle-to-plate distance have been considered as experimental parameters. Depending on nozzle-to-plate distances, different distributions of adiabatic wall temperature are shown by the energy separation at a jet edge and a impinged surface. Also, the recovery factor on a stagnation point decreases significantly due to the isolation of fluid particles in a central region.

An Experimental Study of Supersonic Underexpanded Jet Impinging on a Perpendicular Flat Plate (평판 위에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Impinging jets are observed when exhaust gases from missiles or V/STOL aircrafts impinge on the ground, flame deflector, ship deck, etc. The flow shows different patterns according to the nozzle geometry, nozzle-to-plate distance, and plate angle, for example. This paper describes experimental works on the phenomena (pressure distribution, occurrence of stagnation bubble, and so on.) when underexpanded supersonic jets impinge on a perpendicular flat plate using a supersonic cold-flow system, and compares the results with those obtained using a shock tunnel. The flow characteristics for the supersonic cold-flow system were also investigated. Surface pressure distribution of supersonic cold-flow system differed from that of shock tunnel because of water and temperature in the low-pressure chamber. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Heat transfer on a plain surface by the under-expanded impinging jet (과소팽창제트의 평판충돌에 의한 표면 열전달 특성)

  • 유만선;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • An experimental investigation for impingement of under-expanded, axisymmetric jets on a flat plate has been conducted, and the surface pressure, the adiabatic wall temperature distributions on the plate have been measured in detail at small nozzle-to-plate distances. the pressure ratio and the nozzle-to-plate distance have been considered as experimental parameters.

  • PDF

Thrust modulation performance analysis of pintle-nozzle motor (핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.392-398
    • /
    • 2009
  • Theoretical thrust equations for the diverse nozzle expansion condition were derived. By using the obtained thrust equations, parametric studies were carried out to estimate the effect of pressure exponent, minimum operation pressure, ambient pressure and extinguishment pressure on thrust modulation performance in pintle-nozzle solid rocket motors. Analysis results showed that thrust turndown ratio can be easily attained by small nozzle-throat area variation at high pressure exponent, low minimum operation pressure, high ambient pressure and high extinguishment pressure condition. At those conditions, the highest chamber pressure to obtain the intended thrust turndown ratio can be minimized.

Technology Review and Development Trends of Dual-Bell Nozzle for Altitude Compensation (고도 보정용 듀얼 벨 노즐 개발 동향과 기술 분석)

  • Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.456-465
    • /
    • 2015
  • Dual-bell nozzle can overcome the performance losses of the conventional bell-shaped nozzles which induced by off-design operations with either over-expanded or under-expanded exhaust flow and minimize the losses of the specific impulse. In United States, Rocketdyne analyzed thrust characteristics according to the shape of the expansion nozzle and NASA conducted hot firing tests with various altitudes. DLR, which is one of the research institute of the Europe, is carrying out research for the different cases of inflection angle, nozzle length and expansion ratio. MAI of Russia applied the slot nozzle to the expansion region in order to reduce the performance losses. In Asia, both the Japan and the India are researching on the dual-bell nozzle and Mitsubishi cooperation of the Japan registered its patent. In this paper, concepts and performance of dual-bell nozzle, which can compensate altitude, are investigated and trends of current research are summarized. It is necessary for Korea to research on the dual-bell nozzle for lucrative space development.

Study of Supersonic Jet Impinging on a Jet Deflector (제트 편향기에 충돌하는 초음속 제트에 관한 연구)

  • 이택상;정조순;신완순;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • In this paper, Supersonic jets impinging on a wedge were investigated in order to acquire fundamental design data for jet deflectors. Surface pressure distributions and pressure contours were obtained using a cold flow tester producing Mach 2 supersonic jets. Schlieren system was used to visualize the flow structure on the wedge surface. Numerical computations were performed and compared with the experimental results. Both results were in good agreement. The results showed that underexpansion ratio did not affect on the surface pressure distribution when the wedge is located at the nozzle exit. With increasing underexpansion ratio, pressure recovery decreased as the wedge is located farther from the nozzle exit. In the pressure contour, it was possible to locate the region where the peak pressure on the wedge surface was occurred.

  • PDF