• Title/Summary/Keyword: 과메틸화

Search Result 16, Processing Time 0.04 seconds

DNA Methylation changes in Human Cancers (인체 암의 DNA 메틸화 변화)

  • Kwon, Hyeong-Ju;Kang, Gyeong-Hoon
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Epigenetic changes represented by promoter CpG island hypermethylation and histone modification are an important carcinogenetic mechanism, which is found in virtually all histologic types of human cancer. About 60-70% of human genes harbor CpG islands in their promoters and 5' exonal sequences, and some of them undergo aberrant promoter CpG island hypermethylation and subsequent downregulation of gene expression. The loss of expression in tumor suppressor or tumor-related genes results in acceleration of tumorigenic processes. In addition to regional CpG island hypermethylation, diffuse genomic hypomethylation represents an important aspect of DNA methylation changes occurring in human cancer cells and contributes to chromosomal instability. These apparently contrasting methylation changes occur not only in human cancer cells, but also in premalignant cells. CpG island hypermethylation has gained attention for not only the tumorigenic mechanistic process, but also its potential utilization as a tumor biomarker. DNA methylation markers are actively investigated for their potential uses as tumor biomarkers for diagnosis of tumors in body fluids, prognostication of cancer patients, or prediction of chemotherapeutic drug response. In this review, these aspects will be discussed in detail.

  • PDF

Prognostic Significance of $O^6$-MGMT and Promotor Hypermethylation in Patients with Soft Tissue Sarcomas (연부조직육종 환자에서 $O^6$-MGMT 와 촉진자 과메틸화의 예후적 중요성)

  • Suh, Jeung-Tak;Kim, Jeung-Il;Oh, Jong-Seok;Choi, Kyung-Un
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.15 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Purpose: The DNA repair protein, $O^6$-methylguanine-DNA methyltransferase (MGMT), removes alkyl adducts from the $O^6$ position of guanine. Epigenetic inactivation of MGMT has been found in human neoplasia and considered one of the implicated factors in chemoresistance. Materials and Methods: Sixty-two patiensts with soft tissue sarcomas (STS) were analyzed for the status of MGMT protein expression by immunohistochemistry and the promoter hypermethylation of the MGMT gene using methylation-specific PCR. Result: The loss of MGMT expression was found in 20 cases (32.3%) of total 62 STS. MGMT promoter hypermethylation rate was 25.0% (11/44 cases). The loss of MGMT expression showed significant association with high AJCC stage, high FNCLCC grade, and aggressive behavior. However,when the group who received chemotherapy was analyzed (n=27), loss of MGMT expression was correlated with worse survival in multivariate analysis (p=0.024). MGMT promoter hypermethylation is associated with high FNCLCC grade. MGMT promoter hypermethylation status had a strong correlation with loss of MGMT expression (p=0.000). Conclusion: Our results suggest that MGMT promoter hypermethylation and loss of MGMT expression had a tendency to be associated with poor prognosis and that loss of MGMT protein expression is frequently occurs via MGMT promoter hypermethylation.

  • PDF

Diagnosis of Malignant Pleural Effusion by using Aberrant Methylation of p16 and RARB2 (p16과 RARB2 유전자의 비정상적인 메틸화 검사를 이용한 악성 흉수의 진단)

  • Rha, Seo Hee;Lee, Su Mi;Koo, Tae Hyoung;Shin,, Bong Chul;Huh, Jung Hun;Um, Soo Jung;Yang, Doo Kyung;Lee, Soo-Keol;Son, Choonhee;Roh, Mee Sook;Bae, Ho-Jeong;Kim, Ki Nam;Lee, Ki Nam;Choi, Pil Jo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.285-292
    • /
    • 2008
  • Background: A diagnosis of malignant pleural effusion is clinically important, as the prognosis of lung cancer patients with malignant pleural effusion is poor. The diagnosis will be difficult if a cytological test is negative. This study was performed to investigate whether the detection of hypermethylation of the p16 (CDKN2A) and retinoic acid receptor b2 (RARB2) genes in pleural fluid is useful for a diagnosis of malignant pleural effusion. Methods: Pleural effusion was collected from 43 patients and was investigated for the aberrant promoter methylation of the RARB2 and CDKN2A genes by use of methylation-specific PCR. Results were compared with findings from a pleural biopsy and from pleural fluid cytology. Results: Of 43 cases, 17 cases of pleural effusion were due to benign diseases, and 26 cases were from lung cancer patients with malignant pleural effusion. Hypermethylation of the RARB2 and CDKN2A genes was not detected in the case of benign diseases, independent of whether or not the patients had ever smoked. In 26 cases of malignant pleural effusion, hypermethylation of RARB2, CDKN2A or either of these genes was detected in 14, 5 and 15 cases, respectively. The sensitivities of a pleural biopsy, pleural fluid cytology, hypermethylation of RARB2, hypermethylation of CDKN2A, or hypermethylation of either of the genes were 73.1%, 53.8%, 53.8%, 19.2%, and 57.7%, respectively; negative predictive values were 70.8%, 58.6%, 58.6%, 44.7%, and 60.7%, respectively. If both genes are considered together, the sensitivity and negative predictive value was lower than that for a pleural biopsy, but higher than that for pleural fluid cytology. The sensitivity of hypermethylation of the RARB2 gene for malignant pleural effusion was lower in small cell lung cancers than in non-small cell lung cancers. Conclusion: These results demonstrate that detection of hypermethylation of the RARB2 and CDKN2A genes showed a high specificity, and sensitivity was higher than for pleural fluid cytology. With a better understanding of the pathogenesis of lung cancer according to histological types at the molecular level, and if appropriate genes are selected for hypermethylation testing, more precise results may be obtained.

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation (C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제)

  • Kwak, Juri;Jang, Kyung Lib
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1007-1015
    • /
    • 2018
  • The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.

p16INK4a Promoter Hypermethylation in Sputum, Blood, and Tissue from Non-Small Cell Lung Cancer and Pulmonary Inflammation (비소세포폐암과 염증성 폐질환에서 가래와 혈액 및 조직에서 p16INK4a Promoter 과메틸화)

  • Kim, Jeong Pyo;Kim, Kyong Mee;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak;Ahn, Joong Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.2
    • /
    • pp.160-170
    • /
    • 2006
  • Background : The aberrant promoter hypermethylation of p16INK4a, as a tumor suppressor gene, is contributory factor to non-small cell lung cancer(NSCLC). However, its potential diagnostic impact of lung cancer is unclear. This study measured the level of $p16^{INK4a}$ promoter hypermethylation in the sputum and blood, and compared this with the level measured in the tissue obtained from NSCLC and pulmonary inflammation. Methods : Of the patients who visited the Our Lady of Mercy Hospital in Incheon, Korea for an evaluation of a lung mass and underwent blood, sputum, and tissue tests, 23patients (18 NSCLC, 5 pulmonary inflammation) were enrolled in this study. DNA was extracted from each sample and the level of p16INK4amethylation was determined using methylation-specific polymerase chain reaction. Results : $p16^{INK4a}$ methylation of the blood was observed in 88.9% (16 of 18) and 20.0% (1 of 5) of NSCLC and from pulmonary inflammation samples, respectively (P=0.008). Methylation of the sputum was observed in 83.3% (10 of 12) 80.0% (4 of 5) of NSCLC and pulmonary inflammation samples, respectively (P=1.00). Among the 8 NSCLC tissue samples, methylation changes were detected in 75.0% of samples (6 cases). Four out of seven tissue samples (57.1%) showed concordance, being methylated in both the blood and sputum. Conclusions : There was a higher level of $p16^{INK4a}$ methylation of the blood from NSCLC patients than from pulmonary inflammation. The tissue showed a high concordance with the blood in the NSCLC samples. These findings suggest that $p16^{INK4a}$ promoter hypermethylation of the blood can used to discriminate between NSCLC and pulmonary inflammation.

Effects of environmental carcinogens and genetic polymorphisms on the hypermethylation of hMLH1 gene promoter, microsatellite instability and mutations of the p53 and Ki-ras genes in gastric cancer (환경성 발암물질 및 유전자 다형성이 위암의 hMLH1 유전자 promoter의 과메틸화와 반복 서열 불안정성, 그리고 p53 및 Ki-ras 돌연변이에 미치는 영향에 대한 분자역학적 연구)

  • Nan Hong-Mei;Park Joo-Seung;Yun Hyo-Yung;Song Young-Jin;Hyun Tai-Sun;Kang Jong-Won;Kim Heon
    • 대한예방의학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.314-315
    • /
    • 2001
  • PDF

Methylation Patterns of Imprinting Genes, H19, Igf2r, and Snrpn, in Mouse Embryonic Stem Cells and Nuclear Transferred Embryonic Stem Cells (생쥐의 수정란 배아줄기세포와 체세포핵이식 배아줄기세포에서 각인유전자, H19, Igf2r, Snrpn의 메틸화 경향)

  • Lee, Min-Ho;Ju, Jin-Young;Cho, Youl-Hee;Shim, Sung-Han
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.253-259
    • /
    • 2010
  • DNA methylation is one of the major epigenetic regulations of gene expression. The DNA methylation patterns are dramatically changed during gametogenesis and embryogenesis, and especially, it has been known that embryonic stem cells show a distinct methylation pattern. In this study, we examined the methylation patterns of imprinting genes, H19, Igf2r, and Snrpn, in stem cells induced from fertilized embryo (fES) and somatic cell nuclear transferred embryo (ntES). The methylation pattern of H19 gene in both fES and ntES were similar. However, the methylation patterns of Igf2r and Snrpn in ntES (hypermethylated) were slightly different from fES cells.